These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


305 related items for PubMed ID: 28695386

  • 1. A homomeric geranyl diphosphate synthase-encoding gene from Camptotheca acuminata and its combinatorial optimization for production of geraniol in Escherichia coli.
    Yang L, Jiang L, Li W, Yang Y, Zhang G, Luo Y.
    J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1431-1441. PubMed ID: 28695386
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae.
    Zhao J, Li C, Zhang Y, Shen Y, Hou J, Bao X.
    Microb Cell Fact; 2017 Jan 31; 16(1):17. PubMed ID: 28137282
    [Abstract] [Full Text] [Related]

  • 5. Geranyl diphosphate synthase: an important regulation point in balancing a recombinant monoterpene pathway in Escherichia coli.
    Zhou J, Wang C, Yang L, Choi ES, Kim SW.
    Enzyme Microb Technol; 2015 Jan 31; 68():50-5. PubMed ID: 25435505
    [Abstract] [Full Text] [Related]

  • 6. Increasing the intracellular isoprenoid pool in Saccharomyces cerevisiae by structural fine-tuning of a bifunctional farnesyl diphosphate synthase.
    Rubat S, Varas I, Sepúlveda R, Almonacid D, González-Nilo F, Agosin E.
    FEMS Yeast Res; 2017 Jun 01; 17(4):. PubMed ID: 28854674
    [Abstract] [Full Text] [Related]

  • 7. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae.
    Zhao J, Bao X, Li C, Shen Y, Hou J.
    Appl Microbiol Biotechnol; 2016 May 01; 100(10):4561-71. PubMed ID: 26883346
    [Abstract] [Full Text] [Related]

  • 8. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits.
    Gutensohn M, Orlova I, Nguyen TT, Davidovich-Rikanati R, Ferruzzi MG, Sitrit Y, Lewinsohn E, Pichersky E, Dudareva N.
    Plant J; 2013 Aug 01; 75(3):351-63. PubMed ID: 23607888
    [Abstract] [Full Text] [Related]

  • 9. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli.
    Mendez-Perez D, Alonso-Gutierrez J, Hu Q, Molinas M, Baidoo EEK, Wang G, Chan LJG, Adams PD, Petzold CJ, Keasling JD, Lee TS.
    Biotechnol Bioeng; 2017 Aug 01; 114(8):1703-1712. PubMed ID: 28369701
    [Abstract] [Full Text] [Related]

  • 10. Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis.
    Rai A, Smita SS, Singh AK, Shanker K, Nagegowda DA.
    Mol Plant; 2013 Sep 01; 6(5):1531-49. PubMed ID: 23543438
    [Abstract] [Full Text] [Related]

  • 11. Mono and diterpene production in Escherichia coli.
    Reiling KK, Yoshikuni Y, Martin VJ, Newman J, Bohlmann J, Keasling JD.
    Biotechnol Bioeng; 2004 Jul 20; 87(2):200-12. PubMed ID: 15236249
    [Abstract] [Full Text] [Related]

  • 12. Monoterpenoid biosynthesis in Saccharomyces cerevisiae.
    Oswald M, Fischer M, Dirninger N, Karst F.
    FEMS Yeast Res; 2007 May 20; 7(3):413-21. PubMed ID: 17096665
    [Abstract] [Full Text] [Related]

  • 13. Farnesyl diphosphate synthase: the art of compromise between substrate selectivity and stereoselectivity.
    Thulasiram HV, Poulter CD.
    J Am Chem Soc; 2006 Dec 13; 128(49):15819-23. PubMed ID: 17147392
    [Abstract] [Full Text] [Related]

  • 14. Preparation, characterization, and optimization of an in vitro C30 carotenoid pathway.
    Ku B, Jeong JC, Mijts BN, Schmidt-Dannert C, Dordick JS.
    Appl Environ Microbiol; 2005 Nov 13; 71(11):6578-83. PubMed ID: 16269684
    [Abstract] [Full Text] [Related]

  • 15. Monoterpene biosynthesis potential of plant subcellular compartments.
    Dong L, Jongedijk E, Bouwmeester H, Van Der Krol A.
    New Phytol; 2016 Jan 13; 209(2):679-90. PubMed ID: 26356766
    [Abstract] [Full Text] [Related]

  • 16. Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae.
    Liu J, Zhang W, Du G, Chen J, Zhou J.
    J Biotechnol; 2013 Dec 13; 168(4):446-51. PubMed ID: 24161921
    [Abstract] [Full Text] [Related]

  • 17. Efficient production of (S)-limonene and geraniol in Saccharomyces cerevisiae through the utilization of an Erg20 mutant with enhanced GPP accumulation capability.
    Bernard A, Cha S, Shin H, Lee D, Hahn JS.
    Metab Eng; 2024 May 13; 83():183-192. PubMed ID: 38631459
    [Abstract] [Full Text] [Related]

  • 18. Prenyl alcohol production by expression of exogenous isopentenyl diphosphate isomerase and farnesyl diphosphate synthase genes in Escherichia coli.
    Ohto C, Muramatsu M, Obata S, Sakuradani E, Shimizu S.
    Biosci Biotechnol Biochem; 2009 Jan 13; 73(1):186-8. PubMed ID: 19129660
    [Abstract] [Full Text] [Related]

  • 19. Biochemical characterization of the decaprenyl diphosphate synthase of Rhodobacter sphaeroides for coenzyme Q10 production.
    Zahiri HS, Noghabi KA, Shin YC.
    Appl Microbiol Biotechnol; 2006 Dec 13; 73(4):796-806. PubMed ID: 16896603
    [Abstract] [Full Text] [Related]

  • 20. Rv0989c encodes a novel (E)-geranyl diphosphate synthase facilitating decaprenyl diphosphate biosynthesis in Mycobacterium tuberculosis.
    Mann FM, Thomas JA, Peters RJ.
    FEBS Lett; 2011 Feb 04; 585(3):549-54. PubMed ID: 21237161
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.