These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
658 related items for PubMed ID: 28697384
1. Schizosaccharomyces pombe and Saccharomyces cerevisiae yeasts in sequential fermentations: Effect on phenolic acids of fermented Kei-apple (Dovyalis caffra L.) juice. Minnaar PP, Jolly NP, Paulsen V, Du Plessis HW, Van Der Rijst M. Int J Food Microbiol; 2017 Sep 18; 257():232-237. PubMed ID: 28697384 [Abstract] [Full Text] [Related]
2. Effect of alcoholic and acetous fermentations on the phenolic acids of Kei-apple (Dovyalis caffra L.) fruit. Minnaar P, Jolly N, Beukes L, Benito S. J Sci Food Agric; 2021 Aug 15; 101(10):4315-4320. PubMed ID: 33417242 [Abstract] [Full Text] [Related]
3. Influence of Selected Saccharomyces and Schizosaccharomyces Strains and Their Mixed Cultures on Chemical Composition of Apple Wines. Satora P, Semik-Szczurak D, Tarko T, Bułdys A. J Food Sci; 2018 Feb 15; 83(2):424-431. PubMed ID: 29369362 [Abstract] [Full Text] [Related]
4. Chemical composition of bilberry wine fermented with non-Saccharomyces yeasts (Torulaspora delbrueckii and Schizosaccharomyces pombe) and Saccharomyces cerevisiae in pure, sequential and mixed fermentations. Liu S, Laaksonen O, Kortesniemi M, Kalpio M, Yang B. Food Chem; 2018 Nov 15; 266():262-274. PubMed ID: 30381185 [Abstract] [Full Text] [Related]
5. Polyphenol composition and antioxidant activity of Kei-apple (Dovyalis caffra) juice. Loots DT, van der Westhuizen FH, Jerling J. J Agric Food Chem; 2006 Feb 22; 54(4):1271-6. PubMed ID: 16478247 [Abstract] [Full Text] [Related]
7. Influence of the dominance of must fermentation by Torulaspora delbrueckii on the malolactic fermentation and organoleptic quality of red table wine. Ramírez M, Velázquez R, Maqueda M, Zamora E, López-Piñeiro A, Hernández LM. Int J Food Microbiol; 2016 Dec 05; 238():311-319. PubMed ID: 27718475 [Abstract] [Full Text] [Related]
8. Use of grape racemes from Grillo cultivar to increase the acidity level of sparkling base wines produced with different Saccharomyces cerevisiae strains. Alfonzo A, Francesca N, Mercurio V, Prestianni R, Settanni L, Spanò G, Naselli V, Moschetti G. Yeast; 2020 Sep 05; 37(9-10):475-486. PubMed ID: 32548881 [Abstract] [Full Text] [Related]
9. Sensory profile and volatile aroma composition of reduced alcohol Merlot wines fermented with Metschnikowia pulcherrima and Saccharomyces uvarum. Varela C, Barker A, Tran T, Borneman A, Curtin C. Int J Food Microbiol; 2017 Jul 03; 252():1-9. PubMed ID: 28436828 [Abstract] [Full Text] [Related]
10. Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae. Medina K, Boido E, Fariña L, Gioia O, Gomez ME, Barquet M, Gaggero C, Dellacassa E, Carrau F. Food Chem; 2013 Dec 01; 141(3):2513-21. PubMed ID: 23870989 [Abstract] [Full Text] [Related]
11. Non-Saccharomyces yeast and lactic acid bacteria in Co-inoculated fermentations with two Saccharomyces cerevisiae yeast strains: A strategy to improve the phenolic content of Syrah wine. Minnaar PP, du Plessis HW, Jolly NP, van der Rijst M, du Toit M. Food Chem X; 2019 Dec 30; 4():100070. PubMed ID: 31656955 [Abstract] [Full Text] [Related]
12. Using Torulaspora delbrueckii killer yeasts in the elaboration of base wine and traditional sparkling wine. Velázquez R, Zamora E, Álvarez ML, Ramírez M. Int J Food Microbiol; 2019 Jan 16; 289():134-144. PubMed ID: 30240984 [Abstract] [Full Text] [Related]
13. Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae. Volschenk H, Viljoen-Bloom M, Subden RE, van Vuuren HJ. Yeast; 2001 Jul 16; 18(10):963-70. PubMed ID: 11447602 [Abstract] [Full Text] [Related]
14. Combined Use of S. pombe and L. thermotolerans in Winemaking. Beneficial Effects Determined Through the Study of Wines' Analytical Characteristics. Benito Á, Calderón F, Benito S. Molecules; 2016 Dec 18; 21(12):. PubMed ID: 27999345 [Abstract] [Full Text] [Related]
15. Optimization of fermentation-relevant factors: A strategy to reduce ethanol in red wine by sequential culture of native yeasts. Maturano YP, Mestre MV, Kuchen B, Toro ME, Mercado LA, Vazquez F, Combina M. Int J Food Microbiol; 2019 Jan 16; 289():40-48. PubMed ID: 30196180 [Abstract] [Full Text] [Related]
16. Increased glycosidase activities improved the production of wine varietal odorants in mixed fermentation of P. fermentans and high antagonistic S. cerevisiae. Li N, Wang QQ, Xu YH, Li AH, Tao YS. Food Chem; 2020 Dec 01; 332():127426. PubMed ID: 32619948 [Abstract] [Full Text] [Related]
17. Assessment of chemical composition and sensorial properties of ciders fermented with different non-Saccharomyces yeasts in pure and mixed fermentations. Wei J, Zhang Y, Wang Y, Ju H, Niu C, Song Z, Yuan Y, Yue T. Int J Food Microbiol; 2020 Apr 02; 318():108471. PubMed ID: 31841786 [Abstract] [Full Text] [Related]
19. Oenological potential of non-Saccharomyces yeasts to mitigate effects of climate change in winemaking: impact on aroma and sensory profiles of Treixadura wines. Castrillo D, Rabuñal E, Neira N, Blanco P. FEMS Yeast Res; 2019 Nov 01; 19(7):. PubMed ID: 31584676 [Abstract] [Full Text] [Related]
20. Influence of Fermentation Temperature, Yeast Strain, and Grape Juice on the Aroma Chemistry and Sensory Profile of Sauvignon Blanc Wines. Deed RC, Fedrizzi B, Gardner RC. J Agric Food Chem; 2017 Oct 11; 65(40):8902-8912. PubMed ID: 28922915 [Abstract] [Full Text] [Related] Page: [Next] [New Search]