These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Using nitrification inhibitors and deep placement to tackle the trade-offs between NH3 and N2 O emissions in global croplands. Zhang C, Song X, Zhang Y, Wang D, Rees RM, Ju X. Glob Chang Biol; 2022 Jul; 28(14):4409-4422. PubMed ID: 35429205 [Abstract] [Full Text] [Related]
28. Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Gao B, Huang T, Ju X, Gu B, Huang W, Xu L, Rees RM, Powlson DS, Smith P, Cui S. Glob Chang Biol; 2018 Dec; 24(12):5590-5606. PubMed ID: 30118572 [Abstract] [Full Text] [Related]
30. Simulation of nitrous oxide emissions at field scale using the SPACSYS model. Wu L, Rees RM, Tarsitano D, Zhang X, Jones SK, Whitmore AP. Sci Total Environ; 2015 Oct 15; 530-531():76-86. PubMed ID: 26026411 [Abstract] [Full Text] [Related]
31. PANOMICS at the interface of root-soil microbiome and BNI. Ghatak A, Chaturvedi P, Waldherr S, Subbarao GV, Weckwerth W. Trends Plant Sci; 2023 Jan 15; 28(1):106-122. PubMed ID: 36229336 [Abstract] [Full Text] [Related]
32. Effects of application of inhibitors and biochar to fertilizer on gaseous nitrogen emissions from an intensively managed wheat field. He T, Liu D, Yuan J, Luo J, Lindsey S, Bolan N, Ding W. Sci Total Environ; 2018 Jul 01; 628-629():121-130. PubMed ID: 29428854 [Abstract] [Full Text] [Related]
33. Greenhouse gas mitigation potential of balanced fertilization cropland under double-cropping systems: a case study in Shaanxi province, China. Li C, Li C, Han J, Zhang J, Wang Y, Yang F, Wen X, Liao Y. Environ Monit Assess; 2019 Jan 21; 191(2):90. PubMed ID: 30666420 [Abstract] [Full Text] [Related]
34. Mitigation of nitrous oxide emissions from acidic soils by Bacillus amyloliquefaciens, a plant growth-promoting bacterium. Wu S, Zhuang G, Bai Z, Cen Y, Xu S, Sun H, Han X, Zhuang X. Glob Chang Biol; 2018 Jun 21; 24(6):2352-2365. PubMed ID: 29251817 [Abstract] [Full Text] [Related]
35. Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils. Baah-Acheamfour M, Carlyle CN, Lim SS, Bork EW, Chang SX. Sci Total Environ; 2016 Nov 15; 571():1115-27. PubMed ID: 27450260 [Abstract] [Full Text] [Related]
36. Impacts of crop rotational diversity and grazing under integrated crop-livestock system on soil surface greenhouse gas fluxes. Abagandura GO, Şentürklü S, Singh N, Kumar S, Landblom DG, Ringwall K. PLoS One; 2019 Nov 15; 14(5):e0217069. PubMed ID: 31116765 [Abstract] [Full Text] [Related]
37. Agricultural soils a trigger to nitrous oxide: a persuasive greenhouse gas and its management. Ramzan S, Rasool T, Bhat RA, Ahmad P, Ashraf I, Rashid N, Ul Shafiq M, Mir IA. Environ Monit Assess; 2020 Jun 16; 192(7):436. PubMed ID: 32548706 [Abstract] [Full Text] [Related]
38. Nitrogen fertilizer in combination with an ameliorant mitigated yield-scaled greenhouse gas emissions from a coastal saline rice field in southeastern China. Sun L, Ma Y, Li B, Xiao C, Fan L, Xiong Z. Environ Sci Pollut Res Int; 2018 Jun 16; 25(16):15896-15908. PubMed ID: 29589234 [Abstract] [Full Text] [Related]
39. [Evaluation indices of greenhouse gas mitigation technologies in cropland ecosystem]. Li JZ, Wang YC, Wang LG, Li H, Qiu JJ, Wang DL. Ying Yong Sheng Tai Xue Bao; 2015 Jan 16; 26(1):297-303. PubMed ID: 25985682 [Abstract] [Full Text] [Related]
40. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. Hu HW, Chen D, He JZ. FEMS Microbiol Rev; 2015 Sep 16; 39(5):729-49. PubMed ID: 25934121 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]