These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


145 related items for PubMed ID: 28717483

  • 1. Achieving dynamic behaviour and thermal expansion in the organic solid state via co-crystallization.
    Hutchins KM, Groeneman RH, Reinheimer EW, Swenson DC, MacGillivray LR.
    Chem Sci; 2015 Aug 01; 6(8):4717-4722. PubMed ID: 28717483
    [Abstract] [Full Text] [Related]

  • 2. Negative to positive axial thermal expansion switching of an organic crystal: contribution to multistep photoactuation.
    Hasebe S, Hagiwara Y, Ueno T, Asahi T, Koshima H.
    Chem Sci; 2024 Jan 17; 15(3):1088-1097. PubMed ID: 38239690
    [Abstract] [Full Text] [Related]

  • 3. Colossal Anisotropic Thermal Expansion in a Diazo-Functionalized Compound with Switchable Solid-State Behavior.
    Ding X, Unruh DK, Ma L, van Aalst EJ, Reinheimer EW, Wylie BJ, Hutchins KM.
    Angew Chem Int Ed Engl; 2023 Aug 14; 62(33):e202306198. PubMed ID: 37369627
    [Abstract] [Full Text] [Related]

  • 4. Integration of negative, zero and positive linear thermal expansion makes borate optical crystals light transmission temperature-independent.
    Jiang X, Wang N, Dong L, Molokeev MS, Wang S, Liu Y, Guo S, Li W, Huang R, Wu S, Li L, Lin Z.
    Mater Horiz; 2022 Aug 01; 9(8):2207-2214. PubMed ID: 35708167
    [Abstract] [Full Text] [Related]

  • 5. Extraordinary anisotropic thermal expansion in photosalient crystals.
    Yadava K, Gallo G, Bette S, Mulijanto CE, Karothu DP, Park IH, Medishetty R, Naumov P, Dinnebier RE, Vittal JJ.
    IUCrJ; 2020 Jan 01; 7(Pt 1):83-89. PubMed ID: 31949907
    [Abstract] [Full Text] [Related]

  • 6. Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material.
    Das D, Jacobs T, Barbour LJ.
    Nat Mater; 2010 Jan 01; 9(1):36-9. PubMed ID: 19935666
    [Abstract] [Full Text] [Related]

  • 7. Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF6 (M = Ca, Mn, Fe, Co, Ni, and Zn).
    Hu L, Chen J, Xu J, Wang N, Han F, Ren Y, Pan Z, Rong Y, Huang R, Deng J, Li L, Xing X.
    J Am Chem Soc; 2016 Nov 09; 138(44):14530-14533. PubMed ID: 27783492
    [Abstract] [Full Text] [Related]

  • 8. Colossal negative thermal expansion in reduced layered ruthenate.
    Takenaka K, Okamoto Y, Shinoda T, Katayama N, Sakai Y.
    Nat Commun; 2017 Jan 10; 8():14102. PubMed ID: 28071647
    [Abstract] [Full Text] [Related]

  • 9. Sign change in c-axis thermal expansion constant and lattice collapse by Ni substitution in transition-metal zirconide superconductor Co1-xNixZr2.
    Watanabe Y, Arima H, Usui H, Mizuguchi Y.
    Sci Rep; 2023 Jan 18; 13(1):1008. PubMed ID: 36653405
    [Abstract] [Full Text] [Related]

  • 10. Defect-dependent colossal negative thermal expansion in UiO-66(Hf) metal-organic framework.
    Cliffe MJ, Hill JA, Murray CA, Coudert FX, Goodwin AL.
    Phys Chem Chem Phys; 2015 May 07; 17(17):11586-92. PubMed ID: 25866163
    [Abstract] [Full Text] [Related]

  • 11. Colossal negative thermal expansion in a cucurbit[8]uril-enabled uranyl-organic polythreading framework via thermally induced relaxation.
    Jin QY, Liang YY, Zhang ZH, Meng L, Geng JS, Hu KQ, Yu JP, Chai ZF, Mei L, Shi WQ.
    Chem Sci; 2023 Jun 14; 14(23):6330-6340. PubMed ID: 37325134
    [Abstract] [Full Text] [Related]

  • 12. Size and crystal symmetry breaking effects on negative thermal expansion in ScF3 nanostructures.
    Wang C, Chang D, Wang J, Gao Q, Zhang Y, Niu C, Liu C, Jia Y.
    Phys Chem Chem Phys; 2021 Nov 10; 23(43):24814-24822. PubMed ID: 34714310
    [Abstract] [Full Text] [Related]

  • 13. Mechanisms and Materials for NTE.
    Attfield JP.
    Front Chem; 2018 Nov 10; 6():371. PubMed ID: 30186833
    [Abstract] [Full Text] [Related]

  • 14. Impact of metallophilicity on "colossal" positive and negative thermal expansion in a series of isostructural dicyanometallate coordination polymers.
    Korcok JL, Katz MJ, Leznoff DB.
    J Am Chem Soc; 2009 Apr 08; 131(13):4866-71. PubMed ID: 19290631
    [Abstract] [Full Text] [Related]

  • 15. Zero thermal expansion in a nanostructured inorganic-organic hybrid crystal.
    Zhang Y, Islam Z, Ren Y, Parilla PA, Ahrenkiel SP, Lee PL, Mascarenhas A, McNevin MJ, Naumov I, Fu HX, Huang XY, Li J.
    Phys Rev Lett; 2007 Nov 23; 99(21):215901. PubMed ID: 18233229
    [Abstract] [Full Text] [Related]

  • 16. Abrupt change from moderate positive to colossal negative thermal expansion caused by imidazolate composite formation.
    Burazer S, Horák L, Filinchuk Y, Černý R, Popović J.
    J Mater Sci; 2022 Nov 23; 57(25):11563-11581. PubMed ID: 35789923
    [Abstract] [Full Text] [Related]

  • 17. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.
    Chen J, Hu L, Deng J, Xing X.
    Chem Soc Rev; 2015 Jun 07; 44(11):3522-67. PubMed ID: 25864730
    [Abstract] [Full Text] [Related]

  • 18. Switching from positive to negative axial thermal expansion in two organic crystalline compounds with similar packing.
    Negi L, Shrivastava A, Das D.
    Chem Commun (Camb); 2018 Sep 20; 54(76):10675-10678. PubMed ID: 30137090
    [Abstract] [Full Text] [Related]

  • 19. Predicting Molecular Crystal Properties from First Principles: Finite-Temperature Thermochemistry to NMR Crystallography.
    Beran GJ, Hartman JD, Heit YN.
    Acc Chem Res; 2016 Nov 15; 49(11):2501-2508. PubMed ID: 27754668
    [Abstract] [Full Text] [Related]

  • 20. Tuning Thermal Expansion in Metal-Organic Frameworks Using a Mixed Linker Solid Solution Approach.
    Baxter SJ, Schneemann A, Ready AD, Wijeratne P, Wilkinson AP, Burtch NC.
    J Am Chem Soc; 2019 Aug 14; 141(32):12849-12854. PubMed ID: 31319663
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.