These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
234 related items for PubMed ID: 28719740
41. How Superhydrophobic Grooves Drive Single-Droplet Jumping. Chu F, Yan X, Miljkovic N. Langmuir; 2022 Apr 12; 38(14):4452-4460. PubMed ID: 35348343 [Abstract] [Full Text] [Related]
42. Laplace Pressure Driven Single-Droplet Jumping on Structured Surfaces. Yan X, Qin Y, Chen F, Zhao G, Sett S, Hoque MJ, Rabbi KF, Zhang X, Wang Z, Li L, Chen F, Feng J, Miljkovic N. ACS Nano; 2020 Oct 27; 14(10):12796-12809. PubMed ID: 33052666 [Abstract] [Full Text] [Related]
43. Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with Annular Wedge-Shaped Micropillar Arrays. Hou H, Wu X, Hu Z, Gao S, Yuan Z. Langmuir; 2023 Dec 26; 39(51):18825-18833. PubMed ID: 38096374 [Abstract] [Full Text] [Related]
44. Coalescence-Induced Jumping of Two Unequal-Sized Nanodroplets. Xie FF, Lu G, Wang XD, Wang BB. Langmuir; 2018 Feb 27; 34(8):2734-2740. PubMed ID: 29384379 [Abstract] [Full Text] [Related]
45. Electrostatic charging of jumping droplets. Miljkovic N, Preston DJ, Enright R, Wang EN. Nat Commun; 2013 Feb 27; 4():2517. PubMed ID: 24071721 [Abstract] [Full Text] [Related]
46. Full-field dynamic characterization of superhydrophobic condensation on biotemplated nanostructured surfaces. Ölçeroğlu E, Hsieh CY, Rahman MM, Lau KK, McCarthy M. Langmuir; 2014 Jul 01; 30(25):7556-66. PubMed ID: 24882117 [Abstract] [Full Text] [Related]
47. Numerical Investigation on Coalescence-Induced Jumping of Centripetal Moving Droplets. Gao S, Wu X. Langmuir; 2022 Oct 18; 38(41):12674-12681. PubMed ID: 36201740 [Abstract] [Full Text] [Related]
49. Atmospheric Corrosion Protection Performance and Mechanism of Superhydrophobic Surface Based on Coalescence-Induced Droplet Self-Jumping Behavior. Liu X, Wang P, Zhang D, Chen X. ACS Appl Mater Interfaces; 2021 Jun 02; 13(21):25438-25450. PubMed ID: 34013719 [Abstract] [Full Text] [Related]
50. Coalescence-Induced Swift Jumping of Nanodroplets on Curved Surfaces. He X, Zhao L, Cheng J. Langmuir; 2019 Jul 30; 35(30):9979-9987. PubMed ID: 31282161 [Abstract] [Full Text] [Related]
51. Simulation of Drop-Size Distribution During Dropwise and Jumping Drop Condensation on a Vertical Surface: Implications for Heat Transfer Modeling. Stevens KA, Crockett J, Maynes D, Iverson BD. Langmuir; 2019 Oct 01; 35(39):12858-12875. PubMed ID: 31510738 [Abstract] [Full Text] [Related]
52. Enhancement and Guidance of Coalescence-Induced Jumping of Droplets on Superhydrophobic Surfaces with a U-Groove. Liu C, Zhao M, Zheng Y, Lu D, Song L. ACS Appl Mater Interfaces; 2021 Jul 14; 13(27):32542-32554. PubMed ID: 34180653 [Abstract] [Full Text] [Related]
53. Enhancement and Predictable Guidance of Coalescence-Induced Droplet Jumping on V-Shaped Superhydrophobic Surfaces with a Ridge. Tang S, Li Q, Li W, Chen S. Langmuir; 2024 Aug 12. PubMed ID: 39133052 [Abstract] [Full Text] [Related]
54. Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights. Choi CH, Kim CJ. Langmuir; 2009 Jul 07; 25(13):7561-7. PubMed ID: 19518098 [Abstract] [Full Text] [Related]
55. Simple approach to superhydrophobic nanostructured Al for practical antifrosting application based on enhanced self-propelled jumping droplets. Kim A, Lee C, Kim H, Kim J. ACS Appl Mater Interfaces; 2015 Apr 08; 7(13):7206-13. PubMed ID: 25782028 [Abstract] [Full Text] [Related]
56. Laplace Pressure Difference Enhances Droplet Coalescence Jumping on Superhydrophobic Structures. Liu C, Zhao M, Lu D, Sun Y, Song L, Zheng Y. Langmuir; 2022 Jun 07; 38(22):6923-6933. PubMed ID: 35451848 [Abstract] [Full Text] [Related]
58. Effect of a Superhydrophobic Surface Structure on Droplet Jumping Velocity. Wang K, Ma X, Chen F, Lan Z. Langmuir; 2021 Feb 09; 37(5):1779-1787. PubMed ID: 33502854 [Abstract] [Full Text] [Related]
59. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation. Mondal B, Mac Giolla Eain M, Xu Q, Egan VM, Punch J, Lyons AM. ACS Appl Mater Interfaces; 2015 Oct 28; 7(42):23575-88. PubMed ID: 26372672 [Abstract] [Full Text] [Related]
60. Self-Organization of Microscale Condensate for Delayed Flooding of Nanostructured Superhydrophobic Surfaces. Ölçeroğlu E, McCarthy M. ACS Appl Mater Interfaces; 2016 Mar 02; 8(8):5729-36. PubMed ID: 26855239 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]