These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
733 related items for PubMed ID: 28721502
1. Mucin Cross-Feeding of Infant Bifidobacteria and Eubacterium hallii. Bunesova V, Lacroix C, Schwab C. Microb Ecol; 2018 Jan; 75(1):228-238. PubMed ID: 28721502 [Abstract] [Full Text] [Related]
2. Trophic Interactions of Infant Bifidobacteria and Eubacterium hallii during L-Fucose and Fucosyllactose Degradation. Schwab C, Ruscheweyh HJ, Bunesova V, Pham VT, Beerenwinkel N, Lacroix C. Front Microbiol; 2017 Jan; 8():95. PubMed ID: 28194144 [Abstract] [Full Text] [Related]
3. Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense. Bunesova V, Lacroix C, Schwab C. BMC Microbiol; 2016 Oct 26; 16(1):248. PubMed ID: 27782805 [Abstract] [Full Text] [Related]
4. Bifidobacterium bifidum ATCC 15696 and Bifidobacterium breve 24b Metabolic Interaction Based on 2'-O-Fucosyl-Lactose Studied in Steady-State Cultures in a Freter-Style Chemostat. Centanni M, Ferguson SA, Sims IM, Biswas A, Tannock GW. Appl Environ Microbiol; 2019 Apr 01; 85(7):. PubMed ID: 30683741 [Abstract] [Full Text] [Related]
5. Fucosylated Human Milk Oligosaccharides Drive Structure-Specific Syntrophy between Bifidobacterium infantis and Eubacterium hallii within a Modeled Infant Gut Microbiome. Dedon LR, Hilliard MA, Rani A, Daza-Merchan ZT, Story G, Briere CE, Sela DA. Mol Nutr Food Res; 2023 Jun 01; 67(11):e2200851. PubMed ID: 36938958 [Abstract] [Full Text] [Related]
6. Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium. Egan M, Motherway MO, Kilcoyne M, Kane M, Joshi L, Ventura M, van Sinderen D. BMC Microbiol; 2014 Nov 25; 14():282. PubMed ID: 25420416 [Abstract] [Full Text] [Related]
7. Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats. Van den Abbeele P, Gérard P, Rabot S, Bruneau A, El Aidy S, Derrien M, Kleerebezem M, Zoetendal EG, Smidt H, Verstraete W, Van de Wiele T, Possemiers S. Environ Microbiol; 2011 Oct 25; 13(10):2667-80. PubMed ID: 21883787 [Abstract] [Full Text] [Related]
8. In Vitro Fermentation of caprine milk oligosaccharides by bifidobacteria isolated from breast-fed infants. Thum C, Roy NC, McNabb WC, Otter DE, Cookson AL. Gut Microbes; 2015 Oct 25; 6(6):352-63. PubMed ID: 26587678 [Abstract] [Full Text] [Related]
9. Sharing of human milk oligosaccharides degradants within bifidobacterial communities in faecal cultures supplemented with Bifidobacterium bifidum. Gotoh A, Katoh T, Sakanaka M, Ling Y, Yamada C, Asakuma S, Urashima T, Tomabechi Y, Katayama-Ikegami A, Kurihara S, Yamamoto K, Harata G, He F, Hirose J, Kitaoka M, Okuda S, Katayama T. Sci Rep; 2018 Sep 18; 8(1):13958. PubMed ID: 30228375 [Abstract] [Full Text] [Related]
10. Galacto- and Fructo-oligosaccharides Utilized for Growth by Cocultures of Bifidobacterial Species Characteristic of the Infant Gut. Sims IM, Tannock GW. Appl Environ Microbiol; 2020 May 19; 86(11):. PubMed ID: 32220841 [Abstract] [Full Text] [Related]
11. Lactate- and acetate-based cross-feeding interactions between selected strains of lactobacilli, bifidobacteria and colon bacteria in the presence of inulin-type fructans. Moens F, Verce M, De Vuyst L. Int J Food Microbiol; 2017 Jan 16; 241():225-236. PubMed ID: 27810444 [Abstract] [Full Text] [Related]
12. Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome. Bazanella M, Maier TV, Clavel T, Lagkouvardos I, Lucio M, Maldonado-Gòmez MX, Autran C, Walter J, Bode L, Schmitt-Kopplin P, Haller D. Am J Clin Nutr; 2017 Nov 16; 106(5):1274-1286. PubMed ID: 28877893 [Abstract] [Full Text] [Related]
13. Insights from genomes of representatives of the human gut commensal Bifidobacterium bifidum. Duranti S, Milani C, Lugli GA, Turroni F, Mancabelli L, Sanchez B, Ferrario C, Viappiani A, Mangifesta M, Mancino W, Gueimonde M, Margolles A, van Sinderen D, Ventura M. Environ Microbiol; 2015 Jul 16; 17(7):2515-31. PubMed ID: 25523018 [Abstract] [Full Text] [Related]
14. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Flint HJ. Appl Environ Microbiol; 2006 May 16; 72(5):3593-9. PubMed ID: 16672507 [Abstract] [Full Text] [Related]
15. Butyrate Levels in the Transition from an Infant- to an Adult-Like Gut Microbiota Correlate with Bacterial Networks Associated with Eubacterium Rectale and Ruminococcus Gnavus. Nilsen M, Madelen Saunders C, Leena Angell I, Arntzen MØ, Lødrup Carlsen KC, Carlsen KH, Haugen G, Hagen LH, Carlsen MH, Hedlin G, Jonassen CM, Nordlund B, Rehbinder EM, Skjerven HO, Snipen L, Staff AC, Vettukattil R, Rudi K. Genes (Basel); 2020 Oct 22; 11(11):. PubMed ID: 33105702 [Abstract] [Full Text] [Related]
16. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Duncan SH, Louis P, Flint HJ. Appl Environ Microbiol; 2004 Oct 22; 70(10):5810-7. PubMed ID: 15466518 [Abstract] [Full Text] [Related]
17. Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria. Garrido D, Ruiz-Moyano S, Lemay DG, Sela DA, German JB, Mills DA. Sci Rep; 2015 Sep 04; 5():13517. PubMed ID: 26337101 [Abstract] [Full Text] [Related]
20. Lactate cross-feeding between Bifidobacterium species and Megasphaera indica contributes to butyrate formation in the human colonic environment. Zhao S, Lau R, Zhong Y, Chen M-H. Appl Environ Microbiol; 2024 Jan 24; 90(1):e0101923. PubMed ID: 38126785 [Abstract] [Full Text] [Related] Page: [Next] [New Search]