These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Gibberellin regulates infection and colonization of host roots by arbuscular mycorrhizal fungi. Takeda N, Handa Y, Tsuzuki S, Kojima M, Sakakibara H, Kawaguchi M. Plant Signal Behav; 2015 Oct; 10(6):e1028706. PubMed ID: 26024424 [Abstract] [Full Text] [Related]
25. 13C incorporation into signature fatty acids as an assay for carbon allocation in arbuscular mycorrhiza. Olsson PA, van Aarle IM, Gavito ME, Bengtson P, Bengtsson G. Appl Environ Microbiol; 2005 May; 71(5):2592-9. PubMed ID: 15870350 [Abstract] [Full Text] [Related]
26. Presymbiotic factors released by the arbuscular mycorrhizal fungus Gigaspora margarita induce starch accumulation in Lotus japonicus roots. Gutjahr C, Novero M, Guether M, Montanari O, Udvardi M, Bonfante P. New Phytol; 2009 May; 183(1):53-61. PubMed ID: 19555369 [Abstract] [Full Text] [Related]
28. Cross-kingdom lipid transfer in arbuscular mycorrhiza symbiosis and beyond. Keymer A, Gutjahr C. Curr Opin Plant Biol; 2018 Aug; 44():137-144. PubMed ID: 29729528 [Abstract] [Full Text] [Related]
29. Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. Olsson PA, Rahm J, Aliasgharzad N. FEMS Microbiol Ecol; 2010 Apr; 72(1):125-31. PubMed ID: 20459516 [Abstract] [Full Text] [Related]
30. The Potassium Transporter SlHAK10 Is Involved in Mycorrhizal Potassium Uptake. Liu J, Liu J, Liu J, Cui M, Huang Y, Tian Y, Chen A, Xu G. Plant Physiol; 2019 May; 180(1):465-479. PubMed ID: 30760639 [Abstract] [Full Text] [Related]
33. Isolation and phenotypic characterization of Lotus japonicus mutants specifically defective in arbuscular mycorrhizal formation. Kojima T, Saito K, Oba H, Yoshida Y, Terasawa J, Umehara Y, Suganuma N, Kawaguchi M, Ohtomo R. Plant Cell Physiol; 2014 May; 55(5):928-41. PubMed ID: 24492255 [Abstract] [Full Text] [Related]
34. APETALA 2 transcription factor CBX1 is a regulator of mycorrhizal symbiosis and growth of Lotus japonicus. Liu F, Xu Y, Wang H, Zhou Y, Cheng B, Li X. Plant Cell Rep; 2020 Apr; 39(4):445-455. PubMed ID: 31912218 [Abstract] [Full Text] [Related]
35. Regulation of nitric oxide by phytoglobins in Lotus japonicus is involved in mycorrhizal symbiosis with Rhizophagus irregularis. Fukudome M, Uchiumi T. Plant Sci; 2024 Mar; 340():111984. PubMed ID: 38220094 [Abstract] [Full Text] [Related]
36. Chemical identification and functional analysis of apocarotenoids involved in the development of arbuscular mycorrhizal symbiosis. Akiyama K. Biosci Biotechnol Biochem; 2007 Jun; 71(6):1405-14. PubMed ID: 17587670 [Abstract] [Full Text] [Related]
37. Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus. Takeda N, Sato S, Asamizu E, Tabata S, Parniske M. Plant J; 2009 Jun; 58(5):766-77. PubMed ID: 19220794 [Abstract] [Full Text] [Related]
38. Palmitvaccenic Acid (Δ11-cis-hexadecenoic acid) Is Synthesized by an OLE1-like Desaturase in the Arbuscular Mycorrhiza Fungus Rhizophagus irregularis. Brands M, Cahoon EB, Dörmann P. Biochemistry; 2020 Mar 24; 59(11):1163-1172. PubMed ID: 32135062 [Abstract] [Full Text] [Related]
39. Effect of volatiles versus exudates released by germinating spores of Gigaspora margarita on lateral root formation. Sun XG, Bonfante P, Tang M. Plant Physiol Biochem; 2015 Dec 24; 97():1-10. PubMed ID: 26397199 [Abstract] [Full Text] [Related]