These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
519 related items for PubMed ID: 28731533
1. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering. Baek SH, Kwon EY, Bae SJ, Cho BR, Kim SY, Hahn JS. Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533 [Abstract] [Full Text] [Related]
2. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae. Baek SH, Kwon EY, Kim YH, Hahn JS. Appl Microbiol Biotechnol; 2016 Mar; 100(6):2737-48. PubMed ID: 26596574 [Abstract] [Full Text] [Related]
3. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. Novy V, Brunner B, Müller G, Nidetzky B. Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989 [Abstract] [Full Text] [Related]
4. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid. Lee JY, Kang CD, Lee SH, Park YK, Cho KM. Biotechnol Bioeng; 2015 Apr; 112(4):751-8. PubMed ID: 25363674 [Abstract] [Full Text] [Related]
5. D-lactic acid production by metabolically engineered Saccharomyces cerevisiae. Ishida N, Suzuki T, Tokuhiro K, Nagamori E, Onishi T, Saitoh S, Kitamoto K, Takahashi H. J Biosci Bioeng; 2006 Feb; 101(2):172-7. PubMed ID: 16569615 [Abstract] [Full Text] [Related]
6. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Tokuhiro K, Ishida N, Nagamori E, Saitoh S, Onishi T, Kondo A, Takahashi H. Appl Microbiol Biotechnol; 2009 Apr; 82(5):883-90. PubMed ID: 19122995 [Abstract] [Full Text] [Related]
7. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae. Yu KO, Jung J, Ramzi AB, Kim SW, Park C, Han SO. Appl Biochem Biotechnol; 2012 Feb; 166(4):856-65. PubMed ID: 22161213 [Abstract] [Full Text] [Related]
8. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway. Yamada R, Wakita K, Mitsui R, Ogino H. Biotechnol Bioeng; 2017 Sep; 114(9):2075-2084. PubMed ID: 28475210 [Abstract] [Full Text] [Related]
9. Systematic engineering of Saccharomyces cerevisiae for D-lactic acid production with near theoretical yield. Watcharawipas A, Sae-Tang K, Sansatchanon K, Sudying P, Boonchoo K, Tanapongpipat S, Kocharin K, Runguphan W. FEMS Yeast Res; 2021 Apr 28; 21(4):. PubMed ID: 33856451 [Abstract] [Full Text] [Related]
10. GSF2 deletion increases lactic acid production by alleviating glucose repression in Saccharomyces cerevisiae. Baek SH, Kwon EY, Kim SY, Hahn JS. Sci Rep; 2016 Oct 06; 6():34812. PubMed ID: 27708428 [Abstract] [Full Text] [Related]
11. The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production. Ishida N, Saitoh S, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H. Biosci Biotechnol Biochem; 2006 May 06; 70(5):1148-53. PubMed ID: 16717415 [Abstract] [Full Text] [Related]
12. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae. Xue T, Liu K, Chen D, Yuan X, Fang J, Yan H, Huang L, Chen Y, He W. World J Microbiol Biotechnol; 2018 Oct 01; 34(10):154. PubMed ID: 30276556 [Abstract] [Full Text] [Related]
13. Metabolic Engineering and Adaptive Evolution for Efficient Production of l-Lactic Acid in Saccharomyces cerevisiae. Zhu P, Luo R, Li Y, Chen X. Microbiol Spectr; 2022 Dec 21; 10(6):e0227722. PubMed ID: 36354322 [Abstract] [Full Text] [Related]
14. Genome engineering of Kluyveromyces marxianus for high D-( -)-lactic acid production under low pH conditions. Gosalawit C, Khunnonkwao P, Jantama K. Appl Microbiol Biotechnol; 2023 Aug 21; 107(16):5095-5105. PubMed ID: 37405435 [Abstract] [Full Text] [Related]
15. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Kildegaard KR, Jensen NB, Schneider K, Czarnotta E, Özdemir E, Klein T, Maury J, Ebert BE, Christensen HB, Chen Y, Kim IK, Herrgård MJ, Blank LM, Forster J, Nielsen J, Borodina I. Microb Cell Fact; 2016 Mar 15; 15():53. PubMed ID: 26980206 [Abstract] [Full Text] [Related]
16. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion. Turner TL, Zhang GC, Kim SR, Subramaniam V, Steffen D, Skory CD, Jang JY, Yu BJ, Jin YS. Appl Microbiol Biotechnol; 2015 Oct 15; 99(19):8023-33. PubMed ID: 26043971 [Abstract] [Full Text] [Related]
17. A modified Cre-lox genetic switch to dynamically control metabolic flow in Saccharomyces cerevisiae. Yamanishi M, Matsuyama T. ACS Synth Biol; 2012 May 18; 1(5):172-80. PubMed ID: 23651155 [Abstract] [Full Text] [Related]
18. Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae. Kim JW, Lee YG, Kim SJ, Jin YS, Seo JH. J Biotechnol; 2019 Oct 10; 304():31-37. PubMed ID: 31421146 [Abstract] [Full Text] [Related]
19. Construction of lactic acid-tolerant Saccharomyces cerevisiae by using CRISPR-Cas-mediated genome evolution for efficient D-lactic acid production. Mitsui R, Yamada R, Matsumoto T, Yoshihara S, Tokumoto H, Ogino H. Appl Microbiol Biotechnol; 2020 Nov 10; 104(21):9147-9158. PubMed ID: 32960291 [Abstract] [Full Text] [Related]
20. Expression of Saccharomyces cerevisiae cDNAs to enhance the growth of non-ethanol-producing S. cerevisiae strains lacking pyruvate decarboxylases. Narazaki Y, Nomura Y, Morita K, Shimizu H, Matsuda F. J Biosci Bioeng; 2018 Sep 10; 126(3):317-321. PubMed ID: 29636254 [Abstract] [Full Text] [Related] Page: [Next] [New Search]