These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


318 related items for PubMed ID: 28737728

  • 21. Detecting temporal protein complexes from dynamic protein-protein interaction networks.
    Ou-Yang L, Dai DQ, Li XL, Wu M, Zhang XF, Yang P.
    BMC Bioinformatics; 2014 Oct 04; 15(1):335. PubMed ID: 25282536
    [Abstract] [Full Text] [Related]

  • 22. A New Method for Detecting Protein Complexes based on the Three Node Cliques.
    Zhang W, Zou X.
    IEEE/ACM Trans Comput Biol Bioinform; 2015 Oct 04; 12(4):879-86. PubMed ID: 26357329
    [Abstract] [Full Text] [Related]

  • 23. A method for identifying protein complexes with the features of joint co-localization and joint co-expression in static PPI networks.
    Zhang J, Zhong C, Huang Y, Lin HX, Wang M.
    Comput Biol Med; 2019 Aug 04; 111():103333. PubMed ID: 31376777
    [Abstract] [Full Text] [Related]

  • 24. CACO: A Core-Attachment Method With Cross-Species Functional Ortholog Information to Detect Human Protein Complexes.
    Wang W, Meng X, Xiang J, Shuai Y, Bedru HD, Li M.
    IEEE J Biomed Health Inform; 2023 Sep 04; 27(9):4569-4578. PubMed ID: 37399160
    [Abstract] [Full Text] [Related]

  • 25. Construction of dynamic probabilistic protein interaction networks for protein complex identification.
    Zhang Y, Lin H, Yang Z, Wang J.
    BMC Bioinformatics; 2016 Apr 27; 17(1):186. PubMed ID: 27117946
    [Abstract] [Full Text] [Related]

  • 26. Protein Complexes Prediction Method Based on Core-Attachment Structure and Functional Annotations.
    Li B, Liao B.
    Int J Mol Sci; 2017 Sep 06; 18(9):. PubMed ID: 28878201
    [Abstract] [Full Text] [Related]

  • 27. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B, Guan J.
    IEEE/ACM Trans Comput Biol Bioinform; 2014 Sep 06; 11(4):616-27. PubMed ID: 26356332
    [Abstract] [Full Text] [Related]

  • 28. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.
    Theofilatos K, Pavlopoulou N, Papasavvas C, Likothanassis S, Dimitrakopoulos C, Georgopoulos E, Moschopoulos C, Mavroudi S.
    Artif Intell Med; 2015 Mar 06; 63(3):181-9. PubMed ID: 25765008
    [Abstract] [Full Text] [Related]

  • 29. An uncertain model-based approach for identifying dynamic protein complexes in uncertain protein-protein interaction networks.
    Zhang Y, Lin H, Yang Z, Wang J, Liu Y.
    BMC Genomics; 2017 Oct 16; 18(Suppl 7):743. PubMed ID: 29513194
    [Abstract] [Full Text] [Related]

  • 30. Detecting protein complexes with multiple properties by an adaptive harmony search algorithm.
    Wang R, Wang C, Ma H.
    BMC Bioinformatics; 2022 Oct 07; 23(1):414. PubMed ID: 36207692
    [Abstract] [Full Text] [Related]

  • 31. Protein complex detection based on flower pollination mechanism in multi-relation reconstructed dynamic protein networks.
    Lei X, Fang M, Guo L, Wu FX.
    BMC Bioinformatics; 2019 Mar 29; 20(Suppl 3):131. PubMed ID: 30925866
    [Abstract] [Full Text] [Related]

  • 32. Identification of core-attachment complexes based on maximal frequent patterns in protein-protein interaction networks.
    Yu L, Gao L, Kong C.
    Proteomics; 2011 Oct 29; 11(19):3826-34. PubMed ID: 21761565
    [Abstract] [Full Text] [Related]

  • 33. A Method for Predicting Protein Complexes from Dynamic Weighted Protein-Protein Interaction Networks.
    Liu L, Sun X, Song W, Du C.
    J Comput Biol; 2018 Jun 29; 25(6):586-605. PubMed ID: 29668304
    [Abstract] [Full Text] [Related]

  • 34. Detecting Protein Complexes Based on Uncertain Graph Model.
    Zhao B, Wang J, Li M, Wu FX, Pan Y.
    IEEE/ACM Trans Comput Biol Bioinform; 2014 Jun 29; 11(3):486-97. PubMed ID: 26356017
    [Abstract] [Full Text] [Related]

  • 35. Detection of protein complexes from multiple protein interaction networks using graph embedding.
    Liu X, Yang Z, Sang S, Lin H, Wang J, Xu B.
    Artif Intell Med; 2019 May 29; 96():107-115. PubMed ID: 31164203
    [Abstract] [Full Text] [Related]

  • 36. Detection of functional modules from protein interaction networks with an enhanced random walk based algorithm.
    Cai B, Wang H, Zheng H, Wang H.
    Int J Comput Biol Drug Des; 2011 May 29; 4(3):290-306. PubMed ID: 21778561
    [Abstract] [Full Text] [Related]

  • 37. Examination of the relationship between essential genes in PPI network and hub proteins in reverse nearest neighbor topology.
    Ning K, Ng HK, Srihari S, Leong HW, Nesvizhskii AI.
    BMC Bioinformatics; 2010 Oct 12; 11():505. PubMed ID: 20939873
    [Abstract] [Full Text] [Related]

  • 38. Identifying protein complexes based on brainstorming strategy.
    Shen X, Zhou J, Yi L, Hu X, He T, Yang J.
    Methods; 2016 Nov 01; 110():44-53. PubMed ID: 27405005
    [Abstract] [Full Text] [Related]

  • 39. Discovery of protein complexes with core-attachment structures from Tandem Affinity Purification (TAP) data.
    Wu M, Li XL, Kwoh CK, Ng SK, Wong L.
    J Comput Biol; 2012 Sep 01; 19(9):1027-42. PubMed ID: 21777084
    [Abstract] [Full Text] [Related]

  • 40. A method based on local density and random walks for complexes detection in protein interaction networks.
    Yu L, Gao L, Li K.
    J Bioinform Comput Biol; 2010 Dec 01; 8 Suppl 1():47-62. PubMed ID: 21155019
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.