These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
246 related items for PubMed ID: 28739841
41. Altered glucose and fatty acid oxidation in hearts of the spontaneously hypertensive rat. Christe ME, Rodgers RL. J Mol Cell Cardiol; 1994 Oct; 26(10):1371-5. PubMed ID: 7869397 [Abstract] [Full Text] [Related]
42. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Dyck JR, Cheng JF, Stanley WC, Barr R, Chandler MP, Brown S, Wallace D, Arrhenius T, Harmon C, Yang G, Nadzan AM, Lopaschuk GD. Circ Res; 2004 May 14; 94(9):e78-84. PubMed ID: 15105298 [Abstract] [Full Text] [Related]
44. Fuel availability and fate in cardiac metabolism: A tale of two substrates. Pascual F, Coleman RA. Biochim Biophys Acta; 2016 Oct 14; 1861(10):1425-33. PubMed ID: 26993579 [Abstract] [Full Text] [Related]
45. [Role of membrane lipids in myocardial cytoprotection]. Grynberg A. Arch Mal Coeur Vaiss; 2000 Feb 14; 93(2):175-82. PubMed ID: 10830094 [Abstract] [Full Text] [Related]
46. Potentiation of abnormalities in myocardial metabolism with the development of diabetes in women with obesity and insulin resistance. McGill JB, Peterson LR, Herrero P, Saeed IM, Recklein C, Coggan AR, Demoss AJ, Schechtman KB, Dence CS, Gropler RJ. J Nucl Cardiol; 2011 May 14; 18(3):421-9; quiz 432-3. PubMed ID: 21516378 [Abstract] [Full Text] [Related]
47. Intrinsic diurnal variations in cardiac metabolism and contractile function. Young ME, Razeghi P, Cedars AM, Guthrie PH, Taegtmeyer H. Circ Res; 2001 Dec 07; 89(12):1199-208. PubMed ID: 11739286 [Abstract] [Full Text] [Related]
48. Metabolic and genetic regulation of cardiac energy substrate preference. Kodde IF, van der Stok J, Smolenski RT, de Jong JW. Comp Biochem Physiol A Mol Integr Physiol; 2007 Jan 07; 146(1):26-39. PubMed ID: 17081788 [Abstract] [Full Text] [Related]
49. Reduced fatty acid uptake aggravates cardiac contractile dysfunction in streptozotocin-induced diabetic cardiomyopathy. Umbarawan Y, Kawakami R, Syamsunarno MRAA, Koitabashi N, Obinata H, Yamaguchi A, Hanaoka H, Hishiki T, Hayakawa N, Sunaga H, Matsui H, Kurabayashi M, Iso T. Sci Rep; 2020 Nov 30; 10(1):20809. PubMed ID: 33257783 [Abstract] [Full Text] [Related]
50. Myocardial utilization of carbohydrate and lipids. Neely JR, Rovetto MJ, Oram JF. Prog Cardiovasc Dis; 1972 Nov 30; 15(3):289-329. PubMed ID: 4564017 [No Abstract] [Full Text] [Related]
51. Fatty heart, cardiac damage, and inflammation. Guzzardi MA, Iozzo P. Rev Diabet Stud; 2011 Nov 30; 8(3):403-17. PubMed ID: 22262077 [Abstract] [Full Text] [Related]
52. Activation of PPARgamma enhances myocardial glucose oxidation and improves contractile function in isolated working hearts of ZDF rats. Golfman LS, Wilson CR, Sharma S, Burgmaier M, Young ME, Guthrie PH, Van Arsdall M, Adrogue JV, Brown KK, Taegtmeyer H. Am J Physiol Endocrinol Metab; 2005 Aug 30; 289(2):E328-36. PubMed ID: 15797988 [Abstract] [Full Text] [Related]
53. Abnormal mechanical function in diabetes: relationship to altered myocardial carbohydrate/lipid metabolism. Lopaschuk GD. Coron Artery Dis; 1996 Feb 30; 7(2):116-23. PubMed ID: 8813442 [No Abstract] [Full Text] [Related]
54. Cardiac energetics during ischaemia and the rationale for metabolic interventions. Stanley WC. Coron Artery Dis; 2001 Feb 30; 12 Suppl 1():S3-7. PubMed ID: 11286306 [Abstract] [Full Text] [Related]
55. Triheptanoin Alleviates Ventricular Hypertrophy and Improves Myocardial Glucose Oxidation in Rats With Pressure Overload. Nguyen TD, Shingu Y, Amorim PA, Schwarzer M, Doenst T. J Card Fail; 2015 Nov 30; 21(11):906-15. PubMed ID: 26209001 [Abstract] [Full Text] [Related]
56. Influence of calcium-induced workload transitions and fatty acid supply on myocardial substrate selection. Ala-Rämi A, Ylihautala M, Ingman P, Hassinen IE. Metabolism; 2005 Mar 30; 54(3):410-20. PubMed ID: 15736122 [Abstract] [Full Text] [Related]
57. Myocardial mitochondrial and contractile function are preserved in mice lacking adiponectin. Braun M, Hettinger N, Koentges C, Pfeil K, Cimolai MC, Hoffmann MM, Osterholt M, Doenst T, Bode C, Bugger H. PLoS One; 2015 Mar 30; 10(3):e0119416. PubMed ID: 25785965 [Abstract] [Full Text] [Related]
58. Mitochondrial dysfunction caused by saturated fatty acid loading induces myocardial insulin-resistance in differentiated H9c2 myocytes: a novel ex vivo myocardial insulin-resistance model. Nobuhara M, Saotome M, Watanabe T, Urushida T, Katoh H, Satoh H, Funaki M, Hayashi H. Exp Cell Res; 2013 Apr 15; 319(7):955-66. PubMed ID: 23416068 [Abstract] [Full Text] [Related]
59. Long-Chain Acyl-Carnitines Interfere with Mitochondrial ATP Production Leading to Cardiac Dysfunction in Zebrafish. Park DD, Gahr BM, Krause J, Rottbauer W, Zeller T, Just S. Int J Mol Sci; 2021 Aug 06; 22(16):. PubMed ID: 34445174 [Abstract] [Full Text] [Related]
60. IL-6: A Potential Role in Cardiac Metabolic Homeostasis. Xu Y, Zhang Y, Ye J. Int J Mol Sci; 2018 Aug 21; 19(9):. PubMed ID: 30134607 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]