These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


323 related items for PubMed ID: 28741643

  • 1. Self-reference plasmonic sensors based on double Fano resonances.
    Wang Y, Sun C, Li H, Gong Q, Chen J.
    Nanoscale; 2017 Aug 10; 9(31):11085-11092. PubMed ID: 28741643
    [Abstract] [Full Text] [Related]

  • 2. High-sensitivity plasmonic sensor by narrowing Fano resonances in a tilted metallic nano-groove array.
    Jia S, Li Z, Chen J.
    Opt Express; 2021 Jul 05; 29(14):21358-21368. PubMed ID: 34265925
    [Abstract] [Full Text] [Related]

  • 3. Tuning Multiple Fano Resonances for On-Chip Sensors in a Plasmonic System.
    Yu S, Zhao T, Yu J, Pan D.
    Sensors (Basel); 2019 Mar 31; 19(7):. PubMed ID: 30935140
    [Abstract] [Full Text] [Related]

  • 4. Fano Resonance-Based Blood Plasma Monitoring and Sensing using Plasmonic Nanomatryoshka.
    Pathania P, Shishodia MS.
    Plasmonics; 2021 Mar 31; 16(6):2117-2124. PubMed ID: 34131417
    [Abstract] [Full Text] [Related]

  • 5. Fano-Resonance in Hybrid Metal-Graphene Metamaterial and Its Application as Mid-Infrared Plasmonic Sensor.
    Zhang J, Hong Q, Zou J, He Y, Yuan X, Zhu Z, Qin S.
    Micromachines (Basel); 2020 Mar 04; 11(3):. PubMed ID: 32143457
    [Abstract] [Full Text] [Related]

  • 6. Dual-Function Meta-Grating Based on Tunable Fano Resonance for Reflective Filter and Sensor Applications.
    Liu F, Jia H, Chen Y, Luo X, Huang M, Wang M, Zhang X.
    Sensors (Basel); 2023 Jul 17; 23(14):. PubMed ID: 37514756
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system.
    Li S, Wang Y, Jiao R, Wang L, Duan G, Yu L.
    Opt Express; 2017 Feb 20; 25(4):3525-3533. PubMed ID: 28241566
    [Abstract] [Full Text] [Related]

  • 9. High-performance refractive index sensing system based on multiple Fano resonances in polarization-insensitive metasurface with nanorings.
    Shen Z, Du M.
    Opt Express; 2021 Aug 30; 29(18):28287-28296. PubMed ID: 34614963
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Highly controllable double Fano resonances in plasmonic metasurfaces.
    Liu Z, Ye J.
    Nanoscale; 2016 Oct 14; 8(40):17665-17674. PubMed ID: 27714114
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Independently Tunable Fano Resonances Based on the Coupled Hetero-Cavities in a Plasmonic MIM System.
    Wang Q, Ouyang Z, Lin M, Liu Q.
    Materials (Basel); 2018 Sep 10; 11(9):. PubMed ID: 30201870
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Plasmon resonance hybridization in self-assembled copper nanoparticle clusters: efficient and precise localization of surface plasmon resonance (LSPR) sensing based on Fano resonances.
    Ahmadivand A, Pala N.
    Appl Spectrosc; 2015 Sep 10; 69(2):277-86. PubMed ID: 25587712
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.