These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


530 related items for PubMed ID: 28746399

  • 1. Coordination of matrix attachment and ATP-dependent chromatin remodeling regulate auxin biosynthesis and Arabidopsis hypocotyl elongation.
    Lee K, Seo PJ.
    PLoS One; 2017; 12(7):e0181804. PubMed ID: 28746399
    [Abstract] [Full Text] [Related]

  • 2. The AT-hook-containing proteins SOB3/AHL29 and ESC/AHL27 are negative modulators of hypocotyl growth in Arabidopsis.
    Street IH, Shah PK, Smith AM, Avery N, Neff MM.
    Plant J; 2008 Apr; 54(1):1-14. PubMed ID: 18088311
    [Abstract] [Full Text] [Related]

  • 3. Brassinosteroid signaling converges with SUPPRESSOR OF PHYTOCHROME B4-#3 to influence the expression of SMALL AUXIN UP RNA genes and hypocotyl growth.
    Favero DS, Le KN, Neff MM.
    Plant J; 2017 Mar; 89(6):1133-1145. PubMed ID: 27984677
    [Abstract] [Full Text] [Related]

  • 4. SUPPRESSOR OF PHYTOCHROME B4-#3 Represses Genes Associated with Auxin Signaling to Modulate Hypocotyl Growth.
    Favero DS, Jacques CN, Iwase A, Le KN, Zhao J, Sugimoto K, Neff MM.
    Plant Physiol; 2016 Aug; 171(4):2701-16. PubMed ID: 27342309
    [Abstract] [Full Text] [Related]

  • 5. ZEITLUPE enhances expression of PIF4 and YUC8 in the upper aerial parts of Arabidopsis seedlings to positively regulate hypocotyl elongation.
    Saitoh A, Takase T, Abe H, Watahiki M, Hirakawa Y, Kiyosue T.
    Plant Cell Rep; 2021 Mar; 40(3):479-489. PubMed ID: 33386962
    [Abstract] [Full Text] [Related]

  • 6. PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth.
    Sun J, Qi L, Li Y, Chu J, Li C.
    PLoS Genet; 2012 Mar; 8(3):e1002594. PubMed ID: 22479194
    [Abstract] [Full Text] [Related]

  • 7. A role for ABCB19-mediated polar auxin transport in seedling photomorphogenesis mediated by cryptochrome 1 and phytochrome B.
    Wu G, Cameron JN, Ljung K, Spalding EP.
    Plant J; 2010 Apr; 62(2):179-91. PubMed ID: 20088903
    [Abstract] [Full Text] [Related]

  • 8. IAA3-mediated repression of PIF proteins coordinates light and auxin signaling in Arabidopsis.
    Xi Y, Yang Y, Yang J, Zhang X, Pan Y, Guo H.
    PLoS Genet; 2021 Feb; 17(2):e1009384. PubMed ID: 33600444
    [Abstract] [Full Text] [Related]

  • 9. Enhancement of hypocotyl elongation by LOV KELCH PROTEIN2 production is mediated by auxin and phytochrome-interacting factors in Arabidopsis thaliana.
    Miyazaki Y, Jikumaru Y, Takase T, Saitoh A, Sugitani A, Kamiya Y, Kiyosue T.
    Plant Cell Rep; 2016 Feb; 35(2):455-67. PubMed ID: 26601822
    [Abstract] [Full Text] [Related]

  • 10. Arabidopsis thaliana AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain.
    Zhao J, Favero DS, Peng H, Neff MM.
    Proc Natl Acad Sci U S A; 2013 Nov 26; 110(48):E4688-97. PubMed ID: 24218605
    [Abstract] [Full Text] [Related]

  • 11. The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings.
    Vandenbussche F, Petrásek J, Zádníková P, Hoyerová K, Pesek B, Raz V, Swarup R, Bennett M, Zazímalová E, Benková E, Van Der Straeten D.
    Development; 2010 Feb 26; 137(4):597-606. PubMed ID: 20110325
    [Abstract] [Full Text] [Related]

  • 12. AUXIN-BINDING-PROTEIN1 (ABP1) in phytochrome-B-controlled responses.
    Effendi Y, Jones AM, Scherer GF.
    J Exp Bot; 2013 Nov 26; 64(16):5065-74. PubMed ID: 24052532
    [Abstract] [Full Text] [Related]

  • 13. The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression.
    Hentrich M, Böttcher C, Düchting P, Cheng Y, Zhao Y, Berkowitz O, Masle J, Medina J, Pollmann S.
    Plant J; 2013 May 26; 74(4):626-37. PubMed ID: 23425284
    [Abstract] [Full Text] [Related]

  • 14. Transgene-mediated auxin overproduction in Arabidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resistant mutants.
    Romano CP, Robson PR, Smith H, Estelle M, Klee H.
    Plant Mol Biol; 1995 Mar 26; 27(6):1071-83. PubMed ID: 7766890
    [Abstract] [Full Text] [Related]

  • 15. Auxin and gibberellin responsive Arabidopsis SMALL AUXIN UP RNA36 regulates hypocotyl elongation in the light.
    Stamm P, Kumar PP.
    Plant Cell Rep; 2013 Jun 26; 32(6):759-69. PubMed ID: 23503980
    [Abstract] [Full Text] [Related]

  • 16. Modulation of warm temperature-sensitive growth using a phytochrome B dark reversion variant, phyB[G515E], in Arabidopsis and rice.
    Jeon J, Rahman MM, Yang HW, Kim J, Gam HJ, Song JY, Jeong SW, Kim JI, Choi MG, Shin DH, Choi G, Shim D, Jung JH, Lee IJ, Jeon JS, Park YI.
    J Adv Res; 2024 Sep 26; 63():57-72. PubMed ID: 37926145
    [Abstract] [Full Text] [Related]

  • 17. Photoexcited CRY1 and phyB interact directly with ARF6 and ARF8 to regulate their DNA-binding activity and auxin-induced hypocotyl elongation in Arabidopsis.
    Mao Z, He S, Xu F, Wei X, Jiang L, Liu Y, Wang W, Li T, Xu P, Du S, Li L, Lian H, Guo T, Yang HQ.
    New Phytol; 2020 Jan 26; 225(2):848-865. PubMed ID: 31514232
    [Abstract] [Full Text] [Related]

  • 18. Genome-wide RNA-seq analysis indicates that the DAG1 transcription factor promotes hypocotyl elongation acting on ABA, ethylene and auxin signaling.
    Lorrai R, Gandolfi F, Boccaccini A, Ruta V, Possenti M, Tramontano A, Costantino P, Lepore R, Vittorioso P.
    Sci Rep; 2018 Oct 26; 8(1):15895. PubMed ID: 30367178
    [Abstract] [Full Text] [Related]

  • 19. Involvement of COP1 in ethylene- and light-regulated hypocotyl elongation.
    Liang X, Wang H, Mao L, Hu Y, Dong T, Zhang Y, Wang X, Bi Y.
    Planta; 2012 Dec 26; 236(6):1791-802. PubMed ID: 22890836
    [Abstract] [Full Text] [Related]

  • 20. Phytochromes and cryptochromes regulate the differential growth of Arabidopsis hypocotyls in both a PGP19-dependent and a PGP19-independent manner.
    Nagashima A, Suzuki G, Uehara Y, Saji K, Furukawa T, Koshiba T, Sekimoto M, Fujioka S, Kuroha T, Kojima M, Sakakibara H, Fujisawa N, Okada K, Sakai T.
    Plant J; 2008 Feb 26; 53(3):516-29. PubMed ID: 18086281
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.