These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


459 related items for PubMed ID: 28746858

  • 1. Modeling of Biomechanics and Biorheology of Red Blood Cells in Type 2 Diabetes Mellitus.
    Chang HY, Li X, Karniadakis GE.
    Biophys J; 2017 Jul 25; 113(2):481-490. PubMed ID: 28746858
    [Abstract] [Full Text] [Related]

  • 2. MD/DPD Multiscale Framework for Predicting Morphology and Stresses of Red Blood Cells in Health and Disease.
    Chang HY, Li X, Li H, Karniadakis GE.
    PLoS Comput Biol; 2016 Oct 25; 12(10):e1005173. PubMed ID: 27792725
    [Abstract] [Full Text] [Related]

  • 3. In silico modeling of patient-specific blood rheology in type 2 diabetes mellitus.
    Han K, Ma S, Sun J, Xu M, Qi X, Wang S, Li L, Li X.
    Biophys J; 2023 Apr 18; 122(8):1445-1458. PubMed ID: 36905122
    [Abstract] [Full Text] [Related]

  • 4. Computational modeling of biomechanics and biorheology of heated red blood cells.
    Liu ZL, Li H, Qiang Y, Buffet P, Dao M, Karniadakis GE.
    Biophys J; 2021 Nov 02; 120(21):4663-4671. PubMed ID: 34619119
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW, Styp-Rekowska B, Pries AR.
    Ann Biomed Eng; 2007 May 02; 35(5):755-65. PubMed ID: 17380392
    [Abstract] [Full Text] [Related]

  • 11. Numerical Simulations of the Motion and Deformation of Three RBCs during Poiseuille Flow through a Constricted Vessel Using IB-LBM.
    Wang R, Wei Y, Wu C, Sun L, Zheng W.
    Comput Math Methods Med; 2018 May 02; 2018():9425375. PubMed ID: 29681999
    [Abstract] [Full Text] [Related]

  • 12. Modeling the Effect of Red Blood Cells Deformability on Blood Flow Conditions in Human Carotid Artery Bifurcation.
    Urevc J, Žun I, Brumen M, Štok B.
    J Biomech Eng; 2017 Jan 01; 139(1):. PubMed ID: 27814428
    [Abstract] [Full Text] [Related]

  • 13. Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell.
    Tsubota K, Wada S.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan 01; 81(1 Pt 1):011910. PubMed ID: 20365402
    [Abstract] [Full Text] [Related]

  • 14. Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes.
    Pal R.
    J Biomech; 2003 Jul 01; 36(7):981-9. PubMed ID: 12757807
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics.
    Fedosov DA, Caswell B, Karniadakis GE.
    Biophys J; 2010 May 19; 98(10):2215-25. PubMed ID: 20483330
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Coarse-grained red blood cell model with accurate mechanical properties, rheology and dynamics.
    Fedosov DA, Caswell B, Karniadakis GE.
    Annu Int Conf IEEE Eng Med Biol Soc; 2009 May 19; 2009():4266-9. PubMed ID: 19965026
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.