These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


261 related items for PubMed ID: 28759716

  • 21. Protein thiyl radical reactions and product formation: a kinetic simulation.
    Nauser T, Koppenol WH, Schöneich C.
    Free Radic Biol Med; 2015 Mar; 80():158-63. PubMed ID: 25499854
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Thioguanine restoration through type I photosensitization-superoxide oxidation-glutathione reduction cycles.
    Euceda N, Jahnke J, Espinal A, Louis MF, Bashkin E, Roccanova P, Espaillat A, Fuentes GV, Nieto F, Gao R.
    Phys Chem Chem Phys; 2021 Mar 11; 23(9):5069-5073. PubMed ID: 33655288
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Tetrathiatriarylmethyl radical with a single aromatic hydrogen as a highly sensitive and specific superoxide probe.
    Liu Y, Song Y, De Pascali F, Liu X, Villamena FA, Zweier JL.
    Free Radic Biol Med; 2012 Dec 01; 53(11):2081-2091. PubMed ID: 23000244
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Mechanisms Associated with Superoxide Radical Scavenging Reactions Involving Phenolic Compounds Deduced Based on the Correlation between Oxidation Peak Potentials and Second-Order Rate Constants Determined Using Flow-Injection Spin-Trapping EPR Methods.
    Sakurai Y, Yamaguchi S, Yamashita T, Lu Y, Kuwabara K, Yamaguchi T, Miyake Y, Kanaori K, Watanabe S, Tajima K.
    J Agric Food Chem; 2024 Jul 17; 72(28):16018-16031. PubMed ID: 38960914
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Study of activated oxygen production by some thiols using chemiluminescence.
    Benov LC, Ribarov SR, Monovich OH.
    Gen Physiol Biophys; 1992 Apr 17; 11(2):195-202. PubMed ID: 1330810
    [Abstract] [Full Text] [Related]

  • 35. Trityl radicals as persistent dual function pH and oxygen probes for in vivo electron paramagnetic resonance spectroscopy and imaging: concept and experiment.
    Bobko AA, Dhimitruka I, Zweier JL, Khramtsov VV.
    J Am Chem Soc; 2007 Jun 13; 129(23):7240-1. PubMed ID: 17511458
    [No Abstract] [Full Text] [Related]

  • 36. Electron spin relaxation times and rapid scan EPR imaging of pH-sensitive amino-substituted trityl radicals.
    Elajaili HB, Biller JR, Tseitlin M, Dhimitruka I, Khramtsov VV, Eaton SS, Eaton GR.
    Magn Reson Chem; 2015 Apr 13; 53(4):280-4. PubMed ID: 25504559
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Beer thiol-containing compounds and redox stability: kinetic study of 1-hydroxyethyl radical scavenging ability.
    de Almeida NE, Lund MN, Andersen ML, Cardoso DR.
    J Agric Food Chem; 2013 Oct 02; 61(39):9444-52. PubMed ID: 24007263
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.