These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


495 related items for PubMed ID: 28760667

  • 1. Cell adhesion molecules expression pattern indicates that somatic cells arbitrate gonadal sex of differentiating bipotential fetal mouse gonad.
    Piprek RP, Kolasa M, Podkowa D, Kloc M, Kubiak JZ.
    Mech Dev; 2017 Oct; 147():17-27. PubMed ID: 28760667
    [Abstract] [Full Text] [Related]

  • 2. Transcriptional profiling validates involvement of extracellular matrix and proteinases genes in mouse gonad development.
    Piprek RP, Kolasa M, Podkowa D, Kloc M, Kubiak JZ.
    Mech Dev; 2018 Feb; 149():9-19. PubMed ID: 29129619
    [Abstract] [Full Text] [Related]

  • 3. New candidate genes identified for controlling mouse gonadal sex determination and the early stages of granulosa and Sertoli cell differentiation.
    Bouma GJ, Hudson QJ, Washburn LL, Eicher EM.
    Biol Reprod; 2010 Feb; 82(2):380-9. PubMed ID: 19864314
    [Abstract] [Full Text] [Related]

  • 4. SOX9 regulates microRNA miR-202-5p/3p expression during mouse testis differentiation.
    Wainwright EN, Jorgensen JS, Kim Y, Truong V, Bagheri-Fam S, Davidson T, Svingen T, Fernandez-Valverde SL, McClelland KS, Taft RJ, Harley VR, Koopman P, Wilhelm D.
    Biol Reprod; 2013 Aug; 89(2):34. PubMed ID: 23843232
    [Abstract] [Full Text] [Related]

  • 5. Dynamics of the transcriptional landscape during human fetal testis and ovary development.
    Lecluze E, Rolland AD, Filis P, Evrard B, Leverrier-Penna S, Maamar MB, Coiffec I, Lavoué V, Fowler PA, Mazaud-Guittot S, Jégou B, Chalmel F.
    Hum Reprod; 2020 May 01; 35(5):1099-1119. PubMed ID: 32412604
    [Abstract] [Full Text] [Related]

  • 6. Purification and Transcriptomic Analysis of Mouse Fetal Leydig Cells Reveals Candidate Genes for Specification of Gonadal Steroidogenic Cells.
    McClelland KS, Bell K, Larney C, Harley VR, Sinclair AH, Oshlack A, Koopman P, Bowles J.
    Biol Reprod; 2015 Jun 01; 92(6):145. PubMed ID: 25855264
    [Abstract] [Full Text] [Related]

  • 7. Transcriptional profile of mouse pre-granulosa and Sertoli cells isolated from early-differentiated fetal gonads.
    Bouma GJ, Affourtit JP, Bult CJ, Eicher EM.
    Gene Expr Patterns; 2007 Jan 01; 7(1-2):113-23. PubMed ID: 16839824
    [Abstract] [Full Text] [Related]

  • 8. Sertoli cells of the mouse testis originate from the coelomic epithelium.
    Karl J, Capel B.
    Dev Biol; 1998 Nov 15; 203(2):323-33. PubMed ID: 9808783
    [Abstract] [Full Text] [Related]

  • 9. Characterizing the bipotential mammalian gonad.
    Nef S, Stévant I, Greenfield A.
    Curr Top Dev Biol; 2019 Nov 15; 134():167-194. PubMed ID: 30999975
    [Abstract] [Full Text] [Related]

  • 10. The matricellular protein SPARC is internalized in Sertoli, Leydig, and germ cells during testis differentiation.
    Wilson MJ, Bowles J, Koopman P.
    Mol Reprod Dev; 2006 May 15; 73(5):531-9. PubMed ID: 16425238
    [Abstract] [Full Text] [Related]

  • 11. Meiotic germ cells antagonize mesonephric cell migration and testis cord formation in mouse gonads.
    Yao HH, DiNapoli L, Capel B.
    Development; 2003 Dec 15; 130(24):5895-902. PubMed ID: 14561636
    [Abstract] [Full Text] [Related]

  • 12. The Gonadal Supporting Cell Lineage and Mammalian Sex Determination: The Differentiation of Sertoli and Granulosa Cells.
    Carré GA, Greenfield A.
    Results Probl Cell Differ; 2016 Dec 15; 58():47-66. PubMed ID: 27300175
    [Abstract] [Full Text] [Related]

  • 13. Tissue-specific knockout of E-cadherin (Cdh1) in developing mouse gonads causes germ cells loss.
    Piprek RP, Kolasa M, Podkowa D, Kloc M, Kubiak JZ.
    Reproduction; 2019 Aug 15; 158(2):147-157. PubMed ID: 31100714
    [Abstract] [Full Text] [Related]

  • 14. Sox9b/sox9a2-EGFP transgenic medaka reveals the morphological reorganization of the gonads and a common precursor of both the female and male supporting cells.
    Nakamura S, Aoki Y, Saito D, Kuroki Y, Fujiyama A, Naruse K, Tanaka M.
    Mol Reprod Dev; 2008 Mar 15; 75(3):472-6. PubMed ID: 17474097
    [Abstract] [Full Text] [Related]

  • 15. Ex vivo culture of human fetal gonads: manipulation of meiosis signalling by retinoic acid treatment disrupts testis development.
    Jørgensen A, Nielsen JE, Perlman S, Lundvall L, Mitchell RT, Juul A, Rajpert-De Meyts E.
    Hum Reprod; 2015 Oct 15; 30(10):2351-63. PubMed ID: 26251460
    [Abstract] [Full Text] [Related]

  • 16. Temporal transcriptional profiling of somatic and germ cells reveals biased lineage priming of sexual fate in the fetal mouse gonad.
    Jameson SA, Natarajan A, Cool J, DeFalco T, Maatouk DM, Mork L, Munger SC, Capel B.
    PLoS Genet; 2012 Oct 15; 8(3):e1002575. PubMed ID: 22438826
    [Abstract] [Full Text] [Related]

  • 17. Heterogeneity of ovarian theca and interstitial gland cells in mice.
    Miyabayashi K, Tokunaga K, Otake H, Baba T, Shima Y, Morohashi K.
    PLoS One; 2015 Oct 15; 10(6):e0128352. PubMed ID: 26039146
    [Abstract] [Full Text] [Related]

  • 18. Temporal and spatial localization patterns of Gata4 during porcine gonadogenesis.
    McCoard SA, Wise TH, Fahrenkrug SC, Ford JJ.
    Biol Reprod; 2001 Aug 15; 65(2):366-74. PubMed ID: 11466202
    [Abstract] [Full Text] [Related]

  • 19. CBX2 is required to stabilize the testis pathway by repressing Wnt signaling.
    Garcia-Moreno SA, Lin YT, Futtner CR, Salamone IM, Capel B, Maatouk DM.
    PLoS Genet; 2019 May 15; 15(5):e1007895. PubMed ID: 31116734
    [Abstract] [Full Text] [Related]

  • 20. WNT4 and RSPO1 together are required for cell proliferation in the early mouse gonad.
    Chassot AA, Bradford ST, Auguste A, Gregoire EP, Pailhoux E, de Rooij DG, Schedl A, Chaboissier MC.
    Development; 2012 Dec 01; 139(23):4461-72. PubMed ID: 23095882
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.