These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 28764874
1. Machine learning based identification of protein-protein interactions using derived features of physiochemical properties and evolutionary profiles. Tahir M, Hayat M. Artif Intell Med; 2017 May; 78():61-71. PubMed ID: 28764874 [Abstract] [Full Text] [Related]
4. PCVMZM: Using the Probabilistic Classification Vector Machines Model Combined with a Zernike Moments Descriptor to Predict Protein-Protein Interactions from Protein Sequences. Wang Y, You Z, Li X, Chen X, Jiang T, Zhang J. Int J Mol Sci; 2017 May 11; 18(5):. PubMed ID: 28492483 [Abstract] [Full Text] [Related]
5. Detection of Interactions between Proteins by Using Legendre Moments Descriptor to Extract Discriminatory Information Embedded in PSSM. Wang YB, You ZH, Li LP, Huang YA, Yi HC. Molecules; 2017 Aug 18; 22(8):. PubMed ID: 28820478 [Abstract] [Full Text] [Related]
6. Improving protein-protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model. An JY, Meng FR, You ZH, Chen X, Yan GY, Hu JP. Protein Sci; 2016 Oct 18; 25(10):1825-33. PubMed ID: 27452983 [Abstract] [Full Text] [Related]
9. RVMAB: Using the Relevance Vector Machine Model Combined with Average Blocks to Predict the Interactions of Proteins from Protein Sequences. An JY, You ZH, Meng FR, Xu SJ, Wang Y. Int J Mol Sci; 2016 May 18; 17(5):. PubMed ID: 27213337 [Abstract] [Full Text] [Related]
10. Machine-learning techniques for the prediction of protein-protein interactions. Sarkar D, Saha S. J Biosci; 2019 Sep 18; 44(4):. PubMed ID: 31502581 [Abstract] [Full Text] [Related]
11. StackedEnC-AOP: prediction of antioxidant proteins using transform evolutionary and sequential features based multi-scale vector with stacked ensemble learning. Rukh G, Akbar S, Rehman G, Alarfaj FK, Zou Q. BMC Bioinformatics; 2024 Aug 04; 25(1):256. PubMed ID: 39098908 [Abstract] [Full Text] [Related]
12. Predicting protein-protein interactions from protein sequences by a stacked sparse autoencoder deep neural network. Wang YB, You ZH, Li X, Jiang TH, Chen X, Zhou X, Wang L. Mol Biosyst; 2017 Jun 27; 13(7):1336-1344. PubMed ID: 28604872 [Abstract] [Full Text] [Related]
16. Improving Prediction of Self-interacting Proteins Using Stacked Sparse Auto-Encoder with PSSM profiles. Wang YB, You ZH, Li LP, Huang DS, Zhou FF, Yang S. Int J Biol Sci; 2018 Jun 27; 14(8):983-991. PubMed ID: 29989064 [Abstract] [Full Text] [Related]
17. Advancing the prediction accuracy of protein-protein interactions by utilizing evolutionary information from position-specific scoring matrix and ensemble classifier. Wang L, You ZH, Xia SX, Liu F, Chen X, Yan X, Zhou Y. J Theor Biol; 2017 Apr 07; 418():105-110. PubMed ID: 28088356 [Abstract] [Full Text] [Related]
20. Prediction of oxidoreductase subfamily classes based on RFE-SND-CC-PSSM and machine learning methods. Yuan F, Liu G, Yang X, Wang S, Wang X. J Bioinform Comput Biol; 2019 Aug 07; 17(4):1950029. PubMed ID: 31617464 [Abstract] [Full Text] [Related] Page: [Next] [New Search]