These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
167 related items for PubMed ID: 28766987
1. Optical verification and in-vitro characterization of two commercially available acoustic bubble counters for cardiopulmonary bypass systems. Segers T, Stehouwer MC, de Somer FMJJ, de Mol BA, Versluis M. Perfusion; 2018 Jan; 33(1):16-24. PubMed ID: 28766987 [Abstract] [Full Text] [Related]
5. In vitro air removal characteristics of two neonatal cardiopulmonary bypass systems: filtration may lead to fractionation of bubbles. Stehouwer MC, Kelder JC, van Oeveren W, de Vroege R. Int J Artif Organs; 2014 Sep; 37(9):688-96. PubMed ID: 25262633 [Abstract] [Full Text] [Related]
6. Should Air Bubble Detectors Be Used to Quantify Microbubble Activity during Cardiopulmonary Bypass? Newland RF, Baker RA, Mazzone AL, Valiyapurayil VN. J Extra Corpor Technol; 2015 Sep; 47(3):174-9. PubMed ID: 26543252 [Abstract] [Full Text] [Related]
7. An in vitro evaluation of gaseous microemboli handling by contemporary venous reservoirs and oxygenator systems using EDAC. Stanzel RD, Henderson M. Perfusion; 2016 Jan; 31(1):38-44. PubMed ID: 25987549 [Abstract] [Full Text] [Related]
8. In vitro evaluation of gaseous microemboli handling of cardiopulmonary bypass circuits with and without integrated arterial line filters. Liu S, Newland RF, Tully PJ, Tuble SC, Baker RA. J Extra Corpor Technol; 2011 Sep; 43(3):107-14. PubMed ID: 22164448 [Abstract] [Full Text] [Related]
11. Generation, detection and prevention of gaseous microemboli during cardiopulmonary bypass procedure. Lou S, Ji B, Liu J, Yu K, Long C. Int J Artif Organs; 2011 Nov; 34(11):1039-51. PubMed ID: 22183517 [Abstract] [Full Text] [Related]
12. An In-Vitro Study Comparing the GME Handling of Two Contemporary Oxygenators. Gisnarian CJ, Hedman A, Shann KG. J Extra Corpor Technol; 2017 Dec; 49(4):262-272. PubMed ID: 29302117 [Abstract] [Full Text] [Related]
13. Effect of Normobaric versus Hypobaric Oxygenation on Gaseous Microemboli Removal in a Diffusion Membrane Oxygenator: An In Vitro Comparison. Schuldes M, Riley JB, Francis SG, Clingan S. J Extra Corpor Technol; 2016 Sep; 48(3):129-136. PubMed ID: 27729706 [Abstract] [Full Text] [Related]
16. In Vitro Evaluation of Pediatric Hollow-Fiber Membrane Oxygenators on Hemodynamic Performance and Gaseous Microemboli Handling: An International Multicenter/Multidisciplinary Approach. Wang S, Caneo LF, Jatene MB, Jatene FB, Cestari IA, Kunselman AR, Ündar A. Artif Organs; 2017 Sep; 41(9):865-874. PubMed ID: 28597590 [Abstract] [Full Text] [Related]
17. Measurement of gaseous microemboli in the prime before the initiation of cardiopulmonary bypass. Husebråten IM, Fiane AE, Ringdal MIL, Thiara APS. Perfusion; 2018 Jan; 33(1):30-35. PubMed ID: 28784030 [Abstract] [Full Text] [Related]
18. Gaseous microemboli: sources, causes, and clinical considerations. Kurusz M. Med Instrum; 1985 Jan; 19(2):73-6. PubMed ID: 4000011 [Abstract] [Full Text] [Related]
19. Retrospective Analysis of Air Handling by Contemporary Oxygenators in the Setting of Cardiac Surgery. Benstoem C, Bleilevens C, Borchard R, Stoppe C, Goetzenich A, Autschbach R, Breuer T. Ann Thorac Cardiovasc Surg; 2018 Oct 19; 24(5):230-237. PubMed ID: 29998925 [Abstract] [Full Text] [Related]
20. Effect of Oxygenator Size on Air Removal Characteristics: A Clinical Evaluation. Stehouwer MC, de Vroege R, Kelder JC, Hofman FN, de Mol BA, Bruins P. ASAIO J; 2016 Oct 19; 62(4):421-6. PubMed ID: 26919180 [Abstract] [Full Text] [Related] Page: [Next] [New Search]