These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
318 related items for PubMed ID: 28772933
1. Coaxial Electrospinning and Characterization of Core-Shell Structured Cellulose Nanocrystal Reinforced PMMA/PAN Composite Fibers. Li C, Li Q, Ni X, Liu G, Cheng W, Han G. Materials (Basel); 2017 May 24; 10(6):. PubMed ID: 28772933 [Abstract] [Full Text] [Related]
2. Electrospun cellulose nanocrystals/poly(methyl methacrylate) composite nanofibers: Morphology, thermal and mechanical properties. Ni X, Cheng W, Huan S, Wang D, Han G. Carbohydr Polym; 2019 Feb 15; 206():29-37. PubMed ID: 30553325 [Abstract] [Full Text] [Related]
3. Coaxial electrospinning of composite mats comprised of core/shell poly(methyl methacrylate)/silk fibroin fibers for tissue engineering applications. Atila D, Hasirci V, Tezcaner A. J Mech Behav Biomed Mater; 2022 Apr 15; 128():105105. PubMed ID: 35121425 [Abstract] [Full Text] [Related]
4. Post-draw PAN-PMMA nanofiber reinforced and toughened Bis-GMA dental restorative composite. Sun W, Cai Q, Li P, Deng X, Wei Y, Xu M, Yang X. Dent Mater; 2010 Sep 15; 26(9):873-80. PubMed ID: 20579722 [Abstract] [Full Text] [Related]
5. NaF-loaded core-shell PAN-PMMA nanofibers as reinforcements for Bis-GMA/TEGDMA restorative resins. Cheng L, Zhou X, Zhong H, Deng X, Cai Q, Yang X. Mater Sci Eng C Mater Biol Appl; 2014 Jan 01; 34():262-9. PubMed ID: 24268258 [Abstract] [Full Text] [Related]
7. Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends. Kaerkitcha N, Chuangchote S, Sagawa T. Nanoscale Res Lett; 2016 Dec 11; 11(1):186. PubMed ID: 27067734 [Abstract] [Full Text] [Related]
8. Comparatively Thermal and Crystalline Study of Poly(methyl-methacrylate)/Polyacrylonitrile Hybrids: Core-Shell Hollow Fibers, Porous Fibers, and Thin Films. Huang J, Cao Y, Huang Z, Imbraguglio SA, Wang Z, Peng X, Guo Z. Macromol Mater Eng; 2016 Nov 11; 301(11):1327-1336. PubMed ID: 29104455 [Abstract] [Full Text] [Related]
9. Fiber Alignment and Liquid Crystal Orientation of Cellulose Nanocrystals in the Electrospun Nanofibrous Mats. Song W, Liu D, Prempeh N, Song R. Biomacromolecules; 2017 Oct 09; 18(10):3273-3279. PubMed ID: 28925690 [Abstract] [Full Text] [Related]
10. Electrospun Poly(lactic acid)-Based Fibrous Nanocomposite Reinforced by Cellulose Nanocrystals: Impact of Fiber Uniaxial Alignment on Microstructure and Mechanical Properties. Huan S, Liu G, Cheng W, Han G, Bai L. Biomacromolecules; 2018 Mar 12; 19(3):1037-1046. PubMed ID: 29442497 [Abstract] [Full Text] [Related]
12. Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile-poly(methyl methacrylate) core-shell composite nanoparticles. Wei D, Zhang Y, Fu J. Beilstein J Nanotechnol; 2017 Nov 03; 8():1897-1908. PubMed ID: 29046837 [Abstract] [Full Text] [Related]
13. Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Zhang C, Salick MR, Cordie TM, Ellingham T, Dan Y, Turng LS. Mater Sci Eng C Mater Biol Appl; 2015 Apr 03; 49():463-471. PubMed ID: 25686973 [Abstract] [Full Text] [Related]
14. Electrospun Nanofibers Made of Silver Nanoparticles, Cellulose Nanocrystals, and Polyacrylonitrile as Substrates for Surface-Enhanced Raman Scattering. Ren S, Dong L, Zhang X, Lei T, Ehrenhauser F, Song K, Li M, Sun X, Wu Q. Materials (Basel); 2017 Jan 14; 10(1):. PubMed ID: 28772428 [Abstract] [Full Text] [Related]
15. Preparation and characterization of silica nanoparticulate-polyacrylonitrile composite and porous nanofibers. Ji L, Saquing C, Khan SA, Zhang X. Nanotechnology; 2008 Feb 27; 19(8):085605. PubMed ID: 21730729 [Abstract] [Full Text] [Related]
16. Effects of emulsion droplet size on the structure of electrospun ultrafine biocomposite fibers with cellulose nanocrystals. Li Y, Ko FK, Hamad WY. Biomacromolecules; 2013 Nov 11; 14(11):3801-7. PubMed ID: 23789830 [Abstract] [Full Text] [Related]
17. Mechanics of Emulsion Electrospun Porous Carbon Fibers as Building Blocks of Multifunctional Materials. Chen Y, Cai J, Boyd JG, Kennedy WJ, Naraghi M. ACS Appl Mater Interfaces; 2018 Nov 07; 10(44):38310-38318. PubMed ID: 30360119 [Abstract] [Full Text] [Related]
18. Preparation and Properties of Electrospun Poly (Vinyl Pyrrolidone)/Cellulose Nanocrystal/Silver Nanoparticle Composite Fibers. Huang S, Zhou L, Li MC, Wu Q, Kojima Y, Zhou D. Materials (Basel); 2016 Jun 28; 9(7):. PubMed ID: 28773644 [Abstract] [Full Text] [Related]
19. Core-shell structured PEO-chitosan nanofibers by coaxial electrospinning. Pakravan M, Heuzey MC, Ajji A. Biomacromolecules; 2012 Feb 13; 13(2):412-21. PubMed ID: 22229633 [Abstract] [Full Text] [Related]
20. Effect of silver nanoparticles and cellulose nanocrystals on electrospun poly(lactic) acid mats: morphology, thermal properties and mechanical behavior. Cacciotti I, Fortunati E, Puglia D, Kenny JM, Nanni F. Carbohydr Polym; 2014 Mar 15; 103():22-31. PubMed ID: 24528696 [Abstract] [Full Text] [Related] Page: [Next] [New Search]