These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
171 related items for PubMed ID: 28773366
1. Effect of Sn Content in a CuSnZn Metal Precursor on Formation of MoSe₂ Film during Selenization in Se+SnSe Vapor. Yao L, Ao J, Jeng MJ, Bi J, Gao S, Sun G, He Q, Zhou Z, Sun Y, Chang LB. Materials (Basel); 2016 Mar 29; 9(4):. PubMed ID: 28773366 [Abstract] [Full Text] [Related]
2. CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure. Yao L, Ao J, Jeng MJ, Bi J, Gao S, He Q, Zhou Z, Sun G, Sun Y, Chang LB, Chen JW. Nanoscale Res Lett; 2014 Mar 29; 9(1):678. PubMed ID: 25593559 [Abstract] [Full Text] [Related]
3. Growth of Cu2ZnSnSe4 Film under Controllable Se Vapor Composition and Impact of Low Cu Content on Solar Cell Efficiency. Li J, Wang H, Wu L, Chen C, Zhou Z, Liu F, Sun Y, Han J, Zhang Y. ACS Appl Mater Interfaces; 2016 Apr 27; 8(16):10283-92. PubMed ID: 27058738 [Abstract] [Full Text] [Related]
4. Cu2ZnSnSe4 Thin Film Solar Cell with Depth Gradient Composition Prepared by Selenization of Sputtered Novel Precursors. Lai FI, Yang JF, Chen WC, Kuo SY. ACS Appl Mater Interfaces; 2017 Nov 22; 9(46):40224-40234. PubMed ID: 29072439 [Abstract] [Full Text] [Related]
5. Real-time observation of Cu2ZnSn(S,Se)4 solar cell absorber layer formation from nanoparticle precursors. Mainz R, Walker BC, Schmidt SS, Zander O, Weber A, Rodriguez-Alvarez H, Just J, Klaus M, Agrawal R, Unold T. Phys Chem Chem Phys; 2013 Nov 07; 15(41):18281-9. PubMed ID: 24068197 [Abstract] [Full Text] [Related]
6. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer. Zhang Z, Yao L, Zhang Y, Ao J, Bi J, Gao S, Gao Q, Jeng MJ, Sun G, Zhou Z, He Q, Sun Y. Adv Sci (Weinh); 2018 Feb 07; 5(2):1700645. PubMed ID: 29610727 [Abstract] [Full Text] [Related]
7. Microenvironment Created by SnSe2 Vapor and Pre-Selenization to Stabilize the Surface and Back Contact in Kesterite Solar Cells. Guo J, Mao Y, Ao J, Han Y, Cao C, Liu F, Bi J, Wang S, Zhang Y. Small; 2022 Nov 07; 18(47):e2203354. PubMed ID: 36180408 [Abstract] [Full Text] [Related]
8. Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders. Yang Y, Wang G, Zhao W, Tian Q, Huang L, Pan D. ACS Appl Mater Interfaces; 2015 Jan 14; 7(1):460-4. PubMed ID: 25494493 [Abstract] [Full Text] [Related]
9. Highly efficient copper-zinc-tin-selenide (CZTSe) solar cells by electrodeposition. Jeon JO, Lee KD, Seul Oh L, Seo SW, Lee DK, Kim H, Jeong JH, Ko MJ, Kim B, Son HJ, Kim JY. ChemSusChem; 2014 Apr 14; 7(4):1073-7. PubMed ID: 24692285 [Abstract] [Full Text] [Related]
10. Tailoring Li assisted CZTSe film growth under controllable selenium partial pressure and solar cells. Liu Y, Zhang H, Meng R, Dong J, Xu X, Zhang J, Zhang Y. J Chem Phys; 2024 Sep 28; 161(12):. PubMed ID: 39324533 [Abstract] [Full Text] [Related]
11. KCN Chemical Etch for Interface Engineering in Cu2ZnSnSe4 Solar Cells. Buffière M, Brammertz G, Sahayaraj S, Batuk M, Khelifi S, Mangin D, El Mel AA, Arzel L, Hadermann J, Meuris M, Poortmans J. ACS Appl Mater Interfaces; 2015 Jul 15; 7(27):14690-8. PubMed ID: 26039042 [Abstract] [Full Text] [Related]
12. Influence of the Reaction Pathway on the Defect Formation in a Cu2ZnSnSe4 Thin Film. Yoo H, Jang JS, Shin SW, Lee J, Kim J, Kim DM, Lee IJ, Lee BH, Park J, Kim JH. ACS Appl Mater Interfaces; 2021 Mar 24; 13(11):13425-13433. PubMed ID: 33706505 [Abstract] [Full Text] [Related]
13. Control over MoSe2 formation with vacuum-assisted selenization of one-step electrodeposited Cu-In-Ga-Se precursor layers. Mandati S, Misra P, Boosagulla D, Tata NR, Bulusu SV. Environ Sci Pollut Res Int; 2021 Mar 24; 28(12):15123-15129. PubMed ID: 33230789 [Abstract] [Full Text] [Related]
14. Secondary phases and their influence on the composition of the kesterite phase in CZTS and CZTSe thin films. Just J, Sutter-Fella CM, Lützenkirchen-Hecht D, Frahm R, Schorr S, Unold T. Phys Chem Chem Phys; 2016 Jun 21; 18(23):15988-94. PubMed ID: 27240735 [Abstract] [Full Text] [Related]
15. Copper-Zinc-Tin-Sulfur Thin Film Using Spin-Coating Technology. Yeh MY, Lei PH, Lin SH, Yang CD. Materials (Basel); 2016 Jun 29; 9(7):. PubMed ID: 28773647 [Abstract] [Full Text] [Related]
16. SiOxNy back-contact barriers for CZTSe thin-film solar cells. Chen W, Hirwa H, Ohland J, Taskesen T, Mikolajczak U, Pareek D, Parisi J, Gütay L. PLoS One; 2021 Jun 29; 16(1):e0245390. PubMed ID: 33434239 [Abstract] [Full Text] [Related]
17. Atomic layer deposition of SnSex thin films using Sn(N(CH3)2)4 and Se(Si(CH3)3)2 with NH3 co-injection. Jeon JW, Yoo C, Kim W, Choi W, Park B, Lee YK, Hwang CS. Dalton Trans; 2022 Jan 04; 51(2):594-601. PubMed ID: 34904602 [Abstract] [Full Text] [Related]
18. A Comprehensive Study of One-Step Selenization Process for Cu(In1-x Ga x )Se2 Thin Film Solar Cells. Chen SC, Wang SW, Kuo SY, Juang JY, Lee PT, Luo CW, Wu KH, Kuo HC. Nanoscale Res Lett; 2017 Dec 04; 12(1):208. PubMed ID: 28330186 [Abstract] [Full Text] [Related]
19. Synthesis and Characterization of Cu2ZnSnSe4 by Non-Vacuum Method for Photovoltaic Applications. Sahu M, Minnam Reddy VR, Patro B, Park C, Kim WK, Sharma P. Nanomaterials (Basel); 2022 Apr 28; 12(9):. PubMed ID: 35564212 [Abstract] [Full Text] [Related]
20. Growth mechanism of Ge-doped CZTSSe thin film by sputtering method and solar cells. Li J, Shen H, Chen J, Li Y, Yang J. Phys Chem Chem Phys; 2016 Oct 19; 18(41):28829-28834. PubMed ID: 27722651 [Abstract] [Full Text] [Related] Page: [Next] [New Search]