These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
156 related items for PubMed ID: 28777721
1. Infinite von Mises-Fisher Mixture Modeling of Whole Brain fMRI Data. Røge RE, Madsen KH, Schmidt MN, Mørup M. Neural Comput; 2017 Oct; 29(10):2712-2741. PubMed ID: 28777721 [Abstract] [Full Text] [Related]
2. A hierarchical model for integrating unsupervised generative embedding and empirical Bayes. Raman S, Deserno L, Schlagenhauf F, Stephan KE. J Neurosci Methods; 2016 Aug 30; 269():6-20. PubMed ID: 27141854 [Abstract] [Full Text] [Related]
3. Fast Bayesian whole-brain fMRI analysis with spatial 3D priors. Sidén P, Eklund A, Bolin D, Villani M. Neuroimage; 2017 Feb 01; 146():211-225. PubMed ID: 27876654 [Abstract] [Full Text] [Related]
4. Accounting for Non-Gaussian Sources of Spatial Correlation in Parametric Functional Magnetic Resonance Imaging Paradigms I: Revisiting Cluster-Based Inferences. Gopinath K, Krishnamurthy V, Sathian K. Brain Connect; 2018 Feb 01; 8(1):1-9. PubMed ID: 28927289 [Abstract] [Full Text] [Related]
5. A parcellation scheme based on von Mises-Fisher distributions and Markov random fields for segmenting brain regions using resting-state fMRI. Ryali S, Chen T, Supekar K, Menon V. Neuroimage; 2013 Jan 15; 65():83-96. PubMed ID: 23041530 [Abstract] [Full Text] [Related]
6. Inversion of hierarchical Bayesian models using Gaussian processes. Lomakina EI, Paliwal S, Diaconescu AO, Brodersen KH, Aponte EA, Buhmann JM, Stephan KE. Neuroimage; 2015 Sep 15; 118():133-45. PubMed ID: 26048619 [Abstract] [Full Text] [Related]
7. A Bayesian hierarchical framework for modeling brain connectivity for neuroimaging data. Chen S, Bowman FD, Mayberg HS. Biometrics; 2016 Jun 15; 72(2):596-605. PubMed ID: 26501687 [Abstract] [Full Text] [Related]
8. Time series analysis of fMRI data: Spatial modelling and Bayesian computation. Teng M, Johnson TD, Nathoo FS. Stat Med; 2018 Aug 15; 37(18):2753-2770. PubMed ID: 29717508 [Abstract] [Full Text] [Related]
9. Grouped Spherical Data Modeling Through Hierarchical Nonparametric Bayesian Models and Its Application to fMRI Data Analysis. Fan W, Yang L, Bouguila N. IEEE Trans Neural Netw Learn Syst; 2024 Apr 15; 35(4):5566-5576. PubMed ID: 36173782 [Abstract] [Full Text] [Related]
10. Bayesian mixture models of variable dimension for image segmentation. Ferreira da Silva AR. Comput Methods Programs Biomed; 2009 Apr 15; 94(1):1-14. PubMed ID: 19036468 [Abstract] [Full Text] [Related]
11. Accounting for Non-Gaussian Sources of Spatial Correlation in Parametric Functional Magnetic Resonance Imaging Paradigms II: A Method to Obtain First-Level Analysis Residuals with Uniform and Gaussian Spatial Autocorrelation Function and Independent and Identically Distributed Time-Series. Gopinath K, Krishnamurthy V, Lacey S, Sathian K. Brain Connect; 2018 Feb 15; 8(1):10-21. PubMed ID: 29161884 [Abstract] [Full Text] [Related]
12. Bayesian hierarchical multi-subject multiscale analysis of functional MRI data. Sanyal N, Ferreira MA. Neuroimage; 2012 Nov 15; 63(3):1519-31. PubMed ID: 22951257 [Abstract] [Full Text] [Related]
14. Let's Not Waste Time: Using Temporal Information in Clustered Activity Estimation with Spatial Adjacency Restrictions (CAESAR) for Parcellating FMRI Data. Janssen RJ, Jylänki P, van Gerven MA. PLoS One; 2016 Jan 15; 11(12):e0164703. PubMed ID: 27935937 [Abstract] [Full Text] [Related]
15. Bayesian spatiotemporal modeling on complex-valued fMRI signals via kernel convolutions. Yu CH, Prado R, Ombao H, Rowe D. Biometrics; 2023 Jun 15; 79(2):616-628. PubMed ID: 35143043 [Abstract] [Full Text] [Related]
16. Learning effective connectivity from fMRI using autoregressive hidden Markov model with missing data. Dang S, Chaudhury S, Lall B, Roy PK. J Neurosci Methods; 2017 Feb 15; 278():87-100. PubMed ID: 28065836 [Abstract] [Full Text] [Related]
17. How to avoid mismodelling in GLM-based fMRI data analysis: cross-validated Bayesian model selection. Soch J, Haynes JD, Allefeld C. Neuroimage; 2016 Nov 01; 141():469-489. PubMed ID: 27477536 [Abstract] [Full Text] [Related]
18. Statistical power and prediction accuracy in multisite resting-state fMRI connectivity. Dansereau C, Benhajali Y, Risterucci C, Pich EM, Orban P, Arnold D, Bellec P. Neuroimage; 2017 Apr 01; 149():220-232. PubMed ID: 28161310 [Abstract] [Full Text] [Related]
19. Gaussian process based independent analysis for temporal source separation in fMRI. Hald DH, Henao R, Winther O. Neuroimage; 2017 May 15; 152():563-574. PubMed ID: 28249758 [Abstract] [Full Text] [Related]
20. Predicting individual brain functional connectivity using a Bayesian hierarchical model. Dai T, Guo Y, Alzheimer's Disease Neuroimaging InitiativeDepartment of Biostatistics and Bioinformatics, The Rollins School of Public Health, Emory University, Atlanta, GA, United States.. Neuroimage; 2017 Feb 15; 147():772-787. PubMed ID: 27915121 [Abstract] [Full Text] [Related] Page: [Next] [New Search]