These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
147 related items for PubMed ID: 28778053
1. Release behavior and signaling effect of vitamin D3 in layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffold: An in vitro evaluation. Fayyazbakhsh F, Solati-Hashjin M, Keshtkar A, Shokrgozar MA, Dehghan MM, Larijani B. Colloids Surf B Biointerfaces; 2017 Oct 01; 158():697-708. PubMed ID: 28778053 [Abstract] [Full Text] [Related]
2. Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: Fabrication, characterization, and in vivo study. Fayyazbakhsh F, Solati-Hashjin M, Keshtkar A, Shokrgozar MA, Dehghan MM, Larijani B. Mater Sci Eng C Mater Biol Appl; 2017 Jul 01; 76():701-714. PubMed ID: 28482581 [Abstract] [Full Text] [Related]
3. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study. Mahdavi R, Belgheisi G, Haghbin-Nazarpak M, Omidi M, Khojasteh A, Solati-Hashjin M. J Mater Sci Mater Med; 2020 Oct 31; 31(11):97. PubMed ID: 33135110 [Abstract] [Full Text] [Related]
4. Osteoblast response to Vitamin D3 loaded cellulose enriched hydroxyapatite Mesoporous silica nanoparticles composite. Sumathra M, Munusamy MA, Alarfaj AA, Rajan M. Biomed Pharmacother; 2018 Jul 31; 103():858-868. PubMed ID: 29710502 [Abstract] [Full Text] [Related]
5. A Porous Hydroxyapatite/Gelatin Nanocomposite Scaffold for Bone Tissue Repair: In Vitro and In Vivo Evaluation. Azami M, Tavakol S, Samadikuchaksaraei A, Hashjin MS, Baheiraei N, Kamali M, Nourani MR. J Biomater Sci Polym Ed; 2012 Jul 31; 23(18):2353-68. PubMed ID: 22244095 [Abstract] [Full Text] [Related]
6. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. Maji K, Dasgupta S, Kundu B, Bissoyi A. J Biomater Sci Polym Ed; 2015 Jul 31; 26(16):1190-209. PubMed ID: 26335156 [Abstract] [Full Text] [Related]
7. Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering. Yan J, Miao Y, Tan H, Zhou T, Ling Z, Chen Y, Xing X, Hu X. Mater Sci Eng C Mater Biol Appl; 2016 Jun 31; 63():274-84. PubMed ID: 27040220 [Abstract] [Full Text] [Related]
8. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. Zandi M, Mirzadeh H, Mayer C, Urch H, Eslaminejad MB, Bagheri F, Mivehchi H. J Biomed Mater Res A; 2010 Mar 15; 92(4):1244-55. PubMed ID: 19322878 [Abstract] [Full Text] [Related]
9. Silver-doped hydroxyapatite laden chitosan-gelatin nanocomposite scaffolds for bone tissue engineering: an in-vitro and in-ovo evaluation. Bhushan S, Singh S, Maiti TK, Chaudhari LR, Joshi MG, Dutt D. J Biomater Sci Polym Ed; 2024 Feb 15; 35(2):206-227. PubMed ID: 37947007 [Abstract] [Full Text] [Related]
10. Facile fabrication of poly(L-lactic acid)-grafted hydroxyapatite/poly(lactic-co-glycolic acid) scaffolds by Pickering high internal phase emulsion templates. Hu Y, Gu X, Yang Y, Huang J, Hu M, Chen W, Tong Z, Wang C. ACS Appl Mater Interfaces; 2014 Oct 08; 6(19):17166-75. PubMed ID: 25243730 [Abstract] [Full Text] [Related]
11. Segmental bone regeneration using an rhBMP-2-loaded gelatin/nanohydroxyapatite/fibrin scaffold in a rabbit model. Liu Y, Lu Y, Tian X, Cui G, Zhao Y, Yang Q, Yu S, Xing G, Zhang B. Biomaterials; 2009 Oct 08; 30(31):6276-85. PubMed ID: 19683811 [Abstract] [Full Text] [Related]
12. Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering. Salifu AA, Lekakou C, Labeed FH. J Biomed Mater Res A; 2017 Jul 08; 105(7):1911-1926. PubMed ID: 28263431 [Abstract] [Full Text] [Related]
13. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Sharma C, Dinda AK, Potdar PD, Chou CF, Mishra NC. Mater Sci Eng C Mater Biol Appl; 2016 Jul 01; 64():416-427. PubMed ID: 27127072 [Abstract] [Full Text] [Related]
14. Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid. Azami M, Moosavifar MJ, Baheiraei N, Moztarzadeh F, Ai J. J Biomed Mater Res A; 2012 May 01; 100(5):1347-55. PubMed ID: 22374752 [Abstract] [Full Text] [Related]
15. 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications. Sadat-Shojai M, Khorasani MT, Jamshidi A. Mater Sci Eng C Mater Biol Appl; 2015 Apr 01; 49():835-843. PubMed ID: 25687015 [Abstract] [Full Text] [Related]
16. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences. Vozzi G, Corallo C, Carta S, Fortina M, Gattazzo F, Galletti M, Giordano N. J Biomed Mater Res A; 2014 May 01; 102(5):1415-21. PubMed ID: 23775901 [Abstract] [Full Text] [Related]
17. Poly(l-Lactic Acid)/Gelatin Fibrous Scaffold Loaded with Simvastatin/Beta-Cyclodextrin-Modified Hydroxyapatite Inclusion Complex for Bone Tissue Regeneration. Lee JB, Kim JE, Balikov DA, Bae MS, Heo DN, Lee D, Rim HJ, Lee DW, Sung HJ, Kwon IK. Macromol Biosci; 2016 Jul 01; 16(7):1027-38. PubMed ID: 26996294 [Abstract] [Full Text] [Related]
18. The effect of hydroxyapatite in biopolymer-based scaffolds on release of naproxen sodium. Asadian-Ardakani V, Saber-Samandari S, Saber-Samandari S. J Biomed Mater Res A; 2016 Dec 01; 104(12):2992-3003. PubMed ID: 27449255 [Abstract] [Full Text] [Related]
19. Novel calcified gum Arabic porous nano-composite scaffold for bone tissue regeneration. Hadavi M, Hasannia S, Faghihi S, Mashayekhi F, Zadeh HH, Mostofi SB. Biochem Biophys Res Commun; 2017 Jul 08; 488(4):671-678. PubMed ID: 28302485 [Abstract] [Full Text] [Related]
20. Effect of Morphological Characteristics and Biomineralization of 3D-Printed Gelatin/Hyaluronic Acid/Hydroxyapatite Composite Scaffolds on Bone Tissue Regeneration. Kim JW, Han YS, Lee HM, Kim JK, Kim YJ. Int J Mol Sci; 2021 Jun 24; 22(13):. PubMed ID: 34202759 [Abstract] [Full Text] [Related] Page: [Next] [New Search]