These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


183 related items for PubMed ID: 28782263

  • 1. Regulation of synaptic scaling by action potential-independent miniature neurotransmission.
    Gonzalez-Islas C, Bülow P, Wenner P.
    J Neurosci Res; 2018 Mar; 96(3):348-353. PubMed ID: 28782263
    [Abstract] [Full Text] [Related]

  • 2. Spontaneous Release Regulates Synaptic Scaling in the Embryonic Spinal Network In Vivo.
    Garcia-Bereguiain MA, Gonzalez-Islas C, Lindsly C, Wenner P.
    J Neurosci; 2016 Jul 06; 36(27):7268-82. PubMed ID: 27383600
    [Abstract] [Full Text] [Related]

  • 3. The Uniform and Nonuniform Nature of Slow and Rapid Scaling in Embryonic Motoneurons.
    Pekala D, Wenner P.
    J Neurosci; 2022 Feb 16; 42(7):1224-1234. PubMed ID: 34965976
    [Abstract] [Full Text] [Related]

  • 4. Divergent Synaptic Scaling of Miniature EPSCs following Activity Blockade in Dissociated Neuronal Cultures.
    Hanes AL, Koesters AG, Fong MF, Altimimi HF, Stellwagen D, Wenner P, Engisch KL.
    J Neurosci; 2020 May 20; 40(21):4090-4102. PubMed ID: 32312887
    [Abstract] [Full Text] [Related]

  • 5. Loss of Doc2-Dependent Spontaneous Neurotransmission Augments Glutamatergic Synaptic Strength.
    Ramirez DMO, Crawford DC, Chanaday NL, Trauterman B, Monteggia LM, Kavalali ET.
    J Neurosci; 2017 Jun 28; 37(26):6224-6230. PubMed ID: 28539418
    [Abstract] [Full Text] [Related]

  • 6. In vivo synaptic scaling is mediated by GluA2-lacking AMPA receptors in the embryonic spinal cord.
    Garcia-Bereguiain MA, Gonzalez-Islas C, Lindsly C, Butler E, Hill AW, Wenner P.
    J Neurosci; 2013 Apr 17; 33(16):6791-9. PubMed ID: 23595738
    [Abstract] [Full Text] [Related]

  • 7. GABAergic synaptic scaling in embryonic motoneurons is mediated by a shift in the chloride reversal potential.
    Gonzalez-Islas C, Chub N, Garcia-Bereguiain MA, Wenner P.
    J Neurosci; 2010 Sep 29; 30(39):13016-20. PubMed ID: 20881119
    [Abstract] [Full Text] [Related]

  • 8. Partitioning the synaptic landscape: distinct microdomains for spontaneous and spike-triggered neurotransmission.
    Sutton MA, Schuman EM.
    Sci Signal; 2009 Apr 07; 2(65):pe19. PubMed ID: 19351951
    [Abstract] [Full Text] [Related]

  • 9. All for One But Not One for All: Excitatory Synaptic Scaling and Intrinsic Excitability Are Coregulated by CaMKIV, Whereas Inhibitory Synaptic Scaling Is Under Independent Control.
    Joseph A, Turrigiano GG.
    J Neurosci; 2017 Jul 12; 37(28):6778-6785. PubMed ID: 28592691
    [Abstract] [Full Text] [Related]

  • 10. Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo.
    Keck T, Keller GB, Jacobsen RI, Eysel UT, Bonhoeffer T, Hübener M.
    Neuron; 2013 Oct 16; 80(2):327-34. PubMed ID: 24139037
    [Abstract] [Full Text] [Related]

  • 11. Control of Homeostatic Synaptic Plasticity by AKAP-Anchored Kinase and Phosphatase Regulation of Ca2+-Permeable AMPA Receptors.
    Sanderson JL, Scott JD, Dell'Acqua ML.
    J Neurosci; 2018 Mar 14; 38(11):2863-2876. PubMed ID: 29440558
    [Abstract] [Full Text] [Related]

  • 12. Upward synaptic scaling is dependent on neurotransmission rather than spiking.
    Fong MF, Newman JP, Potter SM, Wenner P.
    Nat Commun; 2015 Mar 09; 6():6339. PubMed ID: 25751516
    [Abstract] [Full Text] [Related]

  • 13. Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei.
    Zheng N, Raman IM.
    Cerebellum; 2010 Mar 09; 9(1):56-66. PubMed ID: 19847585
    [Abstract] [Full Text] [Related]

  • 14. Homeostatic plasticity studied using in vivo hippocampal activity-blockade: synaptic scaling, intrinsic plasticity and age-dependence.
    Echegoyen J, Neu A, Graber KD, Soltesz I.
    PLoS One; 2007 Aug 08; 2(8):e700. PubMed ID: 17684547
    [Abstract] [Full Text] [Related]

  • 15. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis.
    Sutton MA, Ito HT, Cressy P, Kempf C, Woo JC, Schuman EM.
    Cell; 2006 May 19; 125(4):785-99. PubMed ID: 16713568
    [Abstract] [Full Text] [Related]

  • 16. Development regulates a switch between post- and presynaptic strengthening in response to activity deprivation.
    Han EB, Stevens CF.
    Proc Natl Acad Sci U S A; 2009 Jun 30; 106(26):10817-22. PubMed ID: 19509338
    [Abstract] [Full Text] [Related]

  • 17. NMDA receptors and L-type voltage-gated Ca²⁺ channels mediate the expression of bidirectional homeostatic intrinsic plasticity in cultured hippocampal neurons.
    Lee KY, Chung HJ.
    Neuroscience; 2014 Sep 26; 277():610-23. PubMed ID: 25086314
    [Abstract] [Full Text] [Related]

  • 18. GABAergic synaptic scaling is triggered by changes in spiking activity rather than AMPA receptor activation.
    Gonzalez-Islas C, Sabra Z, Fong MF, Yilmam P, Au Yong N, Engisch K, Wenner P.
    Elife; 2024 Jun 28; 12():. PubMed ID: 38941139
    [Abstract] [Full Text] [Related]

  • 19. Activity- and BDNF-induced plasticity of miniature synaptic currents in ES cell-derived neurons integrated in a neocortical network.
    Copi A, Jüngling K, Gottmann K.
    J Neurophysiol; 2005 Dec 28; 94(6):4538-43. PubMed ID: 16293594
    [Abstract] [Full Text] [Related]

  • 20. An improved test for detecting multiplicative homeostatic synaptic scaling.
    Kim J, Tsien RW, Alger BE.
    PLoS One; 2012 Dec 28; 7(5):e37364. PubMed ID: 22615990
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.