These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


248 related items for PubMed ID: 28784328

  • 1. How Hsp90 and Cdc37 Lubricate Kinase Molecular Switches.
    Verba KA, Agard DA.
    Trends Biochem Sci; 2017 Oct; 42(10):799-811. PubMed ID: 28784328
    [Abstract] [Full Text] [Related]

  • 2. Functional Role and Hierarchy of the Intermolecular Interactions in Binding of Protein Kinase Clients to the Hsp90-Cdc37 Chaperone: Structure-Based Network Modeling of Allosteric Regulation.
    Stetz G, Verkhivker GM.
    J Chem Inf Model; 2018 Feb 26; 58(2):405-421. PubMed ID: 29432007
    [Abstract] [Full Text] [Related]

  • 3. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains.
    Czemeres J, Buse K, Verkhivker GM.
    PLoS One; 2017 Feb 26; 12(12):e0190267. PubMed ID: 29267381
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning.
    Smith JR, Workman P.
    Cell Cycle; 2009 Feb 01; 8(3):362-72. PubMed ID: 19177013
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Protein quality control of DYRK family protein kinases by the Hsp90-Cdc37 molecular chaperone.
    Miyata Y, Nishida E.
    Biochim Biophys Acta Mol Cell Res; 2021 Sep 01; 1868(10):119081. PubMed ID: 34147560
    [Abstract] [Full Text] [Related]

  • 10. Cdc37 as a Co-chaperone to Hsp90.
    Prince TL, Lang BJ, Okusha Y, Eguchi T, Calderwood SK.
    Subcell Biochem; 2023 Sep 01; 101():141-158. PubMed ID: 36520306
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Specific regulation of noncanonical p38alpha activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte.
    Ota A, Zhang J, Ping P, Han J, Wang Y.
    Circ Res; 2010 Apr 30; 106(8):1404-12. PubMed ID: 20299663
    [Abstract] [Full Text] [Related]

  • 14. Targeting Hsp90-Cdc37: A Promising Therapeutic Strategy by Inhibiting Hsp90 Chaperone Function.
    Wang L, Li L, Gu K, Xu XL, Sun Y, You QD.
    Curr Drug Targets; 2017 Apr 30; 18(13):1572-1585. PubMed ID: 27231111
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Hsp90·Cdc37 Complexes with Protein Kinases Form Cooperatively with Multiple Distinct Interaction Sites.
    Eckl JM, Scherr MJ, Freiburger L, Daake MA, Sattler M, Richter K.
    J Biol Chem; 2015 Dec 25; 290(52):30843-54. PubMed ID: 26511315
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Cdc37 goes beyond Hsp90 and kinases.
    MacLean M, Picard D.
    Cell Stress Chaperones; 2003 Dec 25; 8(2):114-9. PubMed ID: 14627196
    [Abstract] [Full Text] [Related]

  • 20. Nucleotide-Free sB-Raf is Preferentially Bound by Hsp90 and Cdc37 In Vitro.
    Eckl JM, Daake M, Schwartz S, Richter K.
    J Mol Biol; 2016 Oct 09; 428(20):4185-4196. PubMed ID: 27620500
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.