These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


123 related items for PubMed ID: 2878783

  • 1. Activities of chitinase and protease and concentration of fluoride in the digestive tract of Antarctic fishes feeding on krill (Euphausia superba Dana).
    Rehbein H, Danulat E, Leineman M.
    Comp Biochem Physiol A Comp Physiol; 1986; 85(3):545-51. PubMed ID: 2878783
    [Abstract] [Full Text] [Related]

  • 2. Effect of dietary fluoride derived from Antarctic krill (Euphausia superba) meal on growth of yellowtail (Seriola quinqueradiata).
    Yoshitomi B, Nagano I.
    Chemosphere; 2012 Mar; 86(9):891-7. PubMed ID: 22113059
    [Abstract] [Full Text] [Related]

  • 3. Comparison of Fatty Acid Contents and MMP-1 Inhibitory Effects of the Two Antarctic Fish, Notothenia rossii and Champsocephalus gunnari.
    Lee S, Koo MH, Han DW, Kim IC, Lee JH, Kim JH, Sultana R, Kim SY, Youn UJ, Kim JH.
    Molecules; 2022 Jul 17; 27(14):. PubMed ID: 35889426
    [Abstract] [Full Text] [Related]

  • 4. Purification and characterization of a proteinase from Euphausia superba Dana (Antarctic krill).
    Turkiewicz M, Galas E, Kalinowska H, Romanowska I, Zielińska M.
    Acta Biochim Pol; 1986 Jul 17; 33(2):85-99. PubMed ID: 3532651
    [Abstract] [Full Text] [Related]

  • 5. [Free and total amino acids in the muscles of ice fish (Champsocephalus gunnari Lönnberg) and krill (Euphausia superba Dana)].
    Partmann W.
    Z Ernahrungswiss Suppl; 1981 Sep 17; 20(3):163-71. PubMed ID: 6945759
    [Abstract] [Full Text] [Related]

  • 6. Notothenioid fish, krill and phytoplankton from Antarctica contain a vitamin E constituent (alpha-tocomonoenol) functionally associated with cold-water adaptation.
    Dunlap WC, Fujisawa A, Yamamoto Y, Moylan TJ, Sidell BD.
    Comp Biochem Physiol B Biochem Mol Biol; 2002 Nov 17; 133(3):299-305. PubMed ID: 12431397
    [Abstract] [Full Text] [Related]

  • 7. Niche separation, dynamics, and transport pattern of trace elements along Antarctic krill (Euphausia superba) to its exclusive predator, mackerel icefish (Champsocephalus gunnari).
    Han S, Zhu G.
    Mar Pollut Bull; 2023 Jun 17; 191():114956. PubMed ID: 37121190
    [Abstract] [Full Text] [Related]

  • 8. Interaction of warm acclimation, low salinity, and trophic fluoride on plasmatic constituents of the Antarctic fish Notothenia rossii Richardson, 1844.
    Rodrigues E, Feijó-Oliveira M, Vani GS, Suda CN, Carvalho CS, Donatti L, Lavrado HP, Rodrigues E.
    Fish Physiol Biochem; 2013 Dec 17; 39(6):1591-601. PubMed ID: 23748964
    [Abstract] [Full Text] [Related]

  • 9. Transcriptome-proteome compendium of the Antarctic krill (Euphausia superba): Metabolic potential and repertoire of hydrolytic enzymes.
    Möller L, Vainstein Y, Wöhlbrand L, Dörries M, Meyer B, Sohn K, Rabus R.
    Proteomics; 2022 Sep 17; 22(18):e2100404. PubMed ID: 35778945
    [Abstract] [Full Text] [Related]

  • 10. Extraction of proteins with low fluoride level from Antarctic krill (Euphausia superba) and their composition analysis.
    Wang L, Xue C, Wang Y, Yang B.
    J Agric Food Chem; 2011 Jun 08; 59(11):6108-12. PubMed ID: 21539395
    [Abstract] [Full Text] [Related]

  • 11. Digestive chitinolytic activity in marine fishes of Monterey Bay, California.
    Gutowska MA, Drazen JC, Robison BH.
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Nov 08; 139(3):351-8. PubMed ID: 15556391
    [Abstract] [Full Text] [Related]

  • 12. Increasing levels and biomagnification of persistent organic pollutants (POPs) in Antarctic biota.
    Goerke H, Weber K, Bornemann H, Ramdohr S, Plötz J.
    Mar Pollut Bull; 2004 Feb 08; 48(3-4):295-302. PubMed ID: 14972581
    [Abstract] [Full Text] [Related]

  • 13. Antarctic fishes have a limited capacity for catecholamine synthesis.
    Whiteley NM, Egginton S.
    J Exp Biol; 1999 Dec 08; 202(Pt 24):3623-9. PubMed ID: 10574739
    [Abstract] [Full Text] [Related]

  • 14. Persistent organic pollutants in tissues of the white-blooded Antarctic fish Champsocephalus gunnari and Chaenocephalus aceratus.
    Strobel A, Schmid P, Segner H, Burkhardt-Holm P, Zennegg M.
    Chemosphere; 2016 Oct 08; 161():555-562. PubMed ID: 27198544
    [Abstract] [Full Text] [Related]

  • 15. Adult antarctic krill feeding at abyssal depths.
    Clarke A, Tyler PA.
    Curr Biol; 2008 Feb 26; 18(4):282-5. PubMed ID: 18302926
    [Abstract] [Full Text] [Related]

  • 16. Molecular evidence for genetic subdivision of Antarctic krill (Euphausia superba Dana) populations.
    Zane L, Ostellari L, Maccatrozzo L, Bargelloni L, Battaglia B, Patarnello T.
    Proc Biol Sci; 1998 Dec 22; 265(1413):2387-91. PubMed ID: 9921678
    [Abstract] [Full Text] [Related]

  • 17. Antioxidant defense system and oxidative status in Antarctic fishes: The sluggish rockcod Notothenia coriiceps versus the active marbled notothen Notothenia rossii.
    Klein RD, Rosa CE, Colares EP, Robaldo RB, Martinez PE, Bianchini A.
    J Therm Biol; 2017 Aug 22; 68(Pt A):119-127. PubMed ID: 28689713
    [Abstract] [Full Text] [Related]

  • 18. Persistent organic pollutants (POPs) in antarctic fish: levels, patterns, changes.
    Weber K, Goerke H.
    Chemosphere; 2003 Nov 22; 53(6):667-78. PubMed ID: 12962716
    [Abstract] [Full Text] [Related]

  • 19. Cold-stable microtubules from Antarctic fishes contain unique alpha tubulins.
    Detrich HW, Prasad V, Ludueña RF.
    J Biol Chem; 1987 Jun 15; 262(17):8360-6. PubMed ID: 3597376
    [Abstract] [Full Text] [Related]

  • 20. Heterogeneity and structure of brain tubulins from cold-adapted Antarctic fishes. Comparison to brain tubulins from a temperate fish and a mammal.
    Detrich HW, Overton SA.
    J Biol Chem; 1986 Aug 15; 261(23):10922-30. PubMed ID: 3733739
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.