These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 2878972

  • 1. Abundance in the embryonic brainstem of adrenaline during the absence of detectable tyrosine hydroxylase activity.
    Foster GA, Sundström E, Helmer-Matyjek E, Goldstein M, Hökfelt T.
    J Neurochem; 1987 Jan; 48(1):202-7. PubMed ID: 2878972
    [Abstract] [Full Text] [Related]

  • 2. Distribution of dopamine-, noradrenaline-, and adrenaline-containing cell bodies in the rat medulla oblongata: demonstrated by the immunocytochemical localization of catecholamine biosynthetic enzymes.
    Armstrong DM, Ross CA, Pickel VM, Joh TH, Reis DJ.
    J Comp Neurol; 1982 Dec 01; 212(2):173-87. PubMed ID: 6142061
    [Abstract] [Full Text] [Related]

  • 3. Biochemical evidence for an interaction between adrenaline and noradrenaline neurons in the rat brainstem.
    Astier B, Kitahama K, Denoroy L, Berod A, Jouvet M, Renaud B.
    Brain Res; 1986 Nov 12; 397(2):333-40. PubMed ID: 2879604
    [Abstract] [Full Text] [Related]

  • 4. Evidence for the existence of putative dopamine-, adrenaline- and noradrenaline-containing vagal motor neurons in the brainstem of the rat.
    Kalia M, Fuxe K, Goldstein M, Harfstrand A, Agnati LF, Coyle JT.
    Neurosci Lett; 1984 Sep 07; 50(1-3):57-62. PubMed ID: 6149507
    [Abstract] [Full Text] [Related]

  • 5. Ontogeny of phenylethanolamine N-methyltransferase- and tyrosine hydroxylase-like immunoreactivity in presumptive adrenaline neurones of the foetal rat central nervous system.
    Foster GA, Schultzberg M, Goldstein M, Hökfelt T.
    J Comp Neurol; 1985 Jun 15; 236(3):348-81. PubMed ID: 2865276
    [Abstract] [Full Text] [Related]

  • 6. Increased tyrosine hydroxylase activity in central adrenaline neurons after reserpine treatment.
    Chamba G, Renaud B.
    Eur J Pharmacol; 1983 Sep 02; 92(3-4):243-8. PubMed ID: 6138264
    [Abstract] [Full Text] [Related]

  • 7. A comparative analysis of neurons containing catecholamine-synthesizing enzymes and neuropeptide Y in the ventrolateral medulla of rats, guinea-pigs and cats.
    Halliday GM, McLachlan EM.
    Neuroscience; 1991 Sep 02; 43(2-3):531-50. PubMed ID: 1681467
    [Abstract] [Full Text] [Related]

  • 8. Distribution of tyrosine hydroxylase, dopamine-beta-hydroxylase and phenylethanolamine-N-methyltransferase activities in coronal sections of the rat lower brainstem.
    Chamba G, Renaud B.
    Brain Res; 1983 Jan 17; 259(1):95-102. PubMed ID: 6130822
    [Abstract] [Full Text] [Related]

  • 9. Comparative microdistribution of the activity of catecholamine-synthesizing enzymes in horizontal sections of the rat lower brainstem.
    Chamba G, Denoroy L, Renaud B.
    J Neurochem; 1982 Aug 17; 39(2):577-81. PubMed ID: 6123560
    [Abstract] [Full Text] [Related]

  • 10. Interactions between orexin-immunoreactive fibers and adrenaline or noradrenaline-expressing neurons of the lower brainstem in rats and mice.
    Puskás N, Papp RS, Gallatz K, Palkovits M.
    Peptides; 2010 Aug 17; 31(8):1589-97. PubMed ID: 20434498
    [Abstract] [Full Text] [Related]

  • 11. The distribution of tyrosine hydroxylase, dopamine-beta-hydroxylase, and phenylethanolamine-N-methyltransferase immunoreactive neurons in the feline medulla oblongata.
    Reiner PB, Vincent SR.
    J Comp Neurol; 1986 Jun 22; 248(4):518-31. PubMed ID: 2873156
    [Abstract] [Full Text] [Related]

  • 12. Effect of baroreceptor deafferentation on central catecholamines in the rat.
    Petty MA, Chalmers JP, Brown M, Reid JL.
    Clin Sci (Lond); 1979 Dec 22; 57 Suppl 5():221s-223s. PubMed ID: 44231
    [Abstract] [Full Text] [Related]

  • 13. Induction of c-fos immunoreactivity in tyrosine hydroxylase and phenylethanolamine-N-methyltransferase immunoreactive neurons of the medulla oblongata of the rat after phosphate-buffered saline load in the urethane-anaesthetized rat.
    Narváez JA, Coveñas R, de León M, Aguirre JA, Cintra A, Goldstein M, Fuxe K.
    Brain Res; 1993 Feb 05; 602(2):342-9. PubMed ID: 8095432
    [Abstract] [Full Text] [Related]

  • 14. Catecholamine sulfates: end products or metabolic intermediates?
    Demassieux S, Bordeleau L, Gravel D, Carrière S.
    Life Sci; 1987 Jan 12; 40(2):183-91. PubMed ID: 3796219
    [Abstract] [Full Text] [Related]

  • 15. A new group of neurons in hypothalamus containing phenylethanolamine N-methyltransferase (PNMT) but not tyrosine hydroxylase.
    Ross CA, Ruggiero DA, Meeley MP, Park DH, Joh TH, Reis DJ.
    Brain Res; 1984 Jul 23; 306(1-2):349-53. PubMed ID: 6147173
    [Abstract] [Full Text] [Related]

  • 16. Effects of chronic prenatal hypoxia on tyrosine hydroxylase and phenylethanolamine N-methyltransferase messenger RNA and protein levels in medulla oblongata of postnatal rat.
    White LD, Lawson EE.
    Pediatr Res; 1997 Oct 23; 42(4):455-62. PubMed ID: 9380436
    [Abstract] [Full Text] [Related]

  • 17. Differential effects of increasing gestational age and placental restriction on tyrosine hydroxylase, phenylethanolamine N-methyltransferase, and proenkephalin A mRNA levels in the fetal sheep adrenal.
    Adams MB, Phillips ID, Simonetta G, McMillen IC.
    J Neurochem; 1998 Jul 23; 71(1):394-401. PubMed ID: 9648889
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.