These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 2878972

  • 21. Immunocytochemical localization of catecholamine synthesizing enzymes and neuropeptides in area postrema and medial nucleus tractus solitarius of rat brain.
    Armstrong DM, Pickel VM, Joh TH, Reis DJ, Miller RJ.
    J Comp Neurol; 1981 Mar 01; 196(3):505-17. PubMed ID: 6163796
    [Abstract] [Full Text] [Related]

  • 22. Regional changes in [3H]-noradrenaline uptake, catecholamines and catecholamine synthetic and catabolic enzymes in rat brain following neonatal 6-hydroxydopamine treatment.
    Jonsson G, Sachs C.
    Med Biol; 1976 Aug 01; 54(4):286-97. PubMed ID: 8670
    [Abstract] [Full Text] [Related]

  • 23. Catecholamine turnover changes in hypothalamus and dorsal midline area of the caudal medulla oblongata of spontaneously hypertensive rats.
    Fuxe K, Ganten G, Jonsson G, Agnati LF, Andersson K, Hökfelt T, Bolme P, Goldstein M, Hallman H, Unger T, Rascher W.
    Neurosci Lett; 1979 Dec 01; 15(2-3):283-8. PubMed ID: 530533
    [Abstract] [Full Text] [Related]

  • 24. Localization of tyrosine hydroxylase and phenylethanolamine N-methyltransferase immunoreactive cells in the medulla of the dog.
    Iwamoto GA, Mitchell JH, Sadeq M, Kozlowski GP.
    Neurosci Lett; 1989 Dec 15; 107(1-3):12-8. PubMed ID: 2575722
    [Abstract] [Full Text] [Related]

  • 25. Distribution of neurons containing phenylethanolamine N-methyltransferase in medulla and hypothalamus of rat.
    Ruggiero DA, Ross CA, Anwar M, Park DH, Joh TH, Reis DJ.
    J Comp Neurol; 1985 Sep 08; 239(2):127-54. PubMed ID: 2864362
    [Abstract] [Full Text] [Related]

  • 26. Selective reduction of adrenaline turnover in the dorsal midline area of the caudal medulla oblongata and increase of hypothalamic adrenaline levels in the Lyon strain of genetically hypertensive rats.
    Fuxe K, Vincent M, Andersson K, Härfstrand A, Agnati LF, Sassard J, Benfenati F, Hökfelt T.
    Eur J Pharmacol; 1982 Jan 22; 77(2-3):187-91. PubMed ID: 7060635
    [Abstract] [Full Text] [Related]

  • 27. Caffeine ingestion by rats increases noradrenaline turnover and results in self-biting.
    Miñana MD, Grisolía S.
    J Neurochem; 1986 Sep 22; 47(3):728-32. PubMed ID: 2874191
    [Abstract] [Full Text] [Related]

  • 28. Effects of age on the glucoregulatory response following acute glucoprivation induced by 2-deoxyglucose (2DG) in the adrenal medulla of Sprague Dawley rats.
    Muda NA, Ramlan H, Damanhuri HA.
    Neuro Endocrinol Lett; 2017 Jul 22; 38(3):224-235. PubMed ID: 28759191
    [Abstract] [Full Text] [Related]

  • 29. Early increase in adrenomedullary catecholamine synthesis in sinoaortic denervated rats.
    Saavedra JM, Krieger EM.
    J Auton Nerv Syst; 1987 Feb 22; 18(2):181-3. PubMed ID: 2883211
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Biosynthetic enzyme activities and catecholamines in adrenal glands of genetic and experimental hypertensive rats.
    Grobecker H, Saavedra JM, Weise VK.
    Circ Res; 1982 May 22; 50(5):742-6. PubMed ID: 6122511
    [No Abstract] [Full Text] [Related]

  • 33. Effect of ascorbic acid deficiency on catecholamine synthesis in adrenal glands of SMP30/GNL knockout mice.
    Amano A, Tsunoda M, Aigaki T, Maruyama N, Ishigami A.
    Eur J Nutr; 2014 Feb 22; 53(1):177-85. PubMed ID: 23508458
    [Abstract] [Full Text] [Related]

  • 34. Involvement of hypothalamic adrenaline in the clonidine withdrawal syndrome in normotensive and spontaneously hypertensive rats.
    Lewis SJ, Rowe P, Jarrott B.
    Clin Exp Pharmacol Physiol; 1988 Oct 22; 15(10):773-80. PubMed ID: 3271181
    [Abstract] [Full Text] [Related]

  • 35. Adrenal catecholamine metabolism and myocardial adrenergic receptors in streptozotocin diabetic rats.
    Bitar MS, Koulu M, Rapoport SI, Linnoila M.
    Biochem Pharmacol; 1987 Apr 01; 36(7):1011-6. PubMed ID: 2882757
    [Abstract] [Full Text] [Related]

  • 36. Expression of catecholamine-synthesizing enzymes in paraganglionic and ganglionic cells in the laryngeal nerves of the rat.
    Dahlqvist A, Forsgren S.
    J Neurocytol; 1992 Jan 01; 21(1):1-6. PubMed ID: 1346629
    [Abstract] [Full Text] [Related]

  • 37. Distributions of tyrosine hydroxylase-, dopamine-beta-hydroxylase-, and phenylethanolamine-N-methyltransferase-immunoreactive neurons in the brain of the hamster (Mesocricetus auratus).
    Vincent SR.
    J Comp Neurol; 1988 Feb 22; 268(4):584-99. PubMed ID: 2895779
    [Abstract] [Full Text] [Related]

  • 38. Phenylethanolamine N-methyltransferase-containing neurons in the limbic system of the young rat.
    Mezey E.
    Proc Natl Acad Sci U S A; 1989 Jan 22; 86(1):347-51. PubMed ID: 2563164
    [Abstract] [Full Text] [Related]

  • 39. Neuropeptide Y-immunoreactive perikarya and nerve terminals in the rat medulla oblongata: relationship to cytoarchitecture and catecholaminergic cell groups.
    Härfstrand A, Fuxe K, Terenius L, Kalia M.
    J Comp Neurol; 1987 Jun 01; 260(1):20-35. PubMed ID: 2885349
    [Abstract] [Full Text] [Related]

  • 40. Effects of chronic sinoaortic denervation on central vasopressin and catecholamine systems.
    Alexander N, Morris M.
    Am J Physiol; 1988 Nov 01; 255(5 Pt 2):R768-73. PubMed ID: 2903684
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.