These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


195 related items for PubMed ID: 28790206

  • 1. Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Saccharomyces cerevisiae.
    Chomvong K, Benjamin DI, Nomura DK, Cate JHD.
    mBio; 2017 Aug 08; 8(4):. PubMed ID: 28790206
    [Abstract] [Full Text] [Related]

  • 2. Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae.
    Johnston M, Kim JH.
    Biochem Soc Trans; 2005 Feb 08; 33(Pt 1):247-52. PubMed ID: 15667318
    [Abstract] [Full Text] [Related]

  • 3. Measurements of intracellular ATP provide new insight into the regulation of glycolysis in the yeast Saccharomyces cerevisiae.
    Ytting CK, Fuglsang AT, Hiltunen JK, Kastaniotis AJ, Özalp VC, Nielsen LJ, Olsen LF.
    Integr Biol (Camb); 2012 Jan 08; 4(1):99-107. PubMed ID: 22134619
    [Abstract] [Full Text] [Related]

  • 4. Glucose repression in Saccharomyces cerevisiae.
    Kayikci Ö, Nielsen J.
    FEMS Yeast Res; 2015 Sep 08; 15(6):. PubMed ID: 26205245
    [Abstract] [Full Text] [Related]

  • 5. Leveraging transcription factors to speed cellobiose fermentation by Saccharomyces cerevisiae.
    Lin Y, Chomvong K, Acosta-Sampson L, Estrela R, Galazka JM, Kim SR, Jin YS, Cate JH.
    Biotechnol Biofuels; 2014 Sep 08; 7(1):126. PubMed ID: 25435910
    [Abstract] [Full Text] [Related]

  • 6. Activity of the plasma membrane H(+)-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid.
    Holyoak CD, Stratford M, McMullin Z, Cole MB, Crimmins K, Brown AJ, Coote PJ.
    Appl Environ Microbiol; 1996 Sep 08; 62(9):3158-64. PubMed ID: 8795204
    [Abstract] [Full Text] [Related]

  • 7. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae.
    Oh EJ, Skerker JM, Kim SR, Wei N, Turner TL, Maurer MJ, Arkin AP, Jin YS.
    Appl Environ Microbiol; 2016 Jun 15; 82(12):3631-3639. PubMed ID: 27084006
    [Abstract] [Full Text] [Related]

  • 8. Glucose regulation of Saccharomyces cerevisiae cell cycle genes.
    Newcomb LL, Diderich JA, Slattery MG, Heideman W.
    Eukaryot Cell; 2003 Feb 15; 2(1):143-9. PubMed ID: 12582131
    [Abstract] [Full Text] [Related]

  • 9. Coordinated regulation of intracellular pH by two glucose-sensing pathways in yeast.
    Isom DG, Page SC, Collins LB, Kapolka NJ, Taghon GJ, Dohlman HG.
    J Biol Chem; 2018 Feb 16; 293(7):2318-2329. PubMed ID: 29284676
    [Abstract] [Full Text] [Related]

  • 10. Glucose regulation of the paralogous glucose sensing receptors Rgt2 and Snf3 of the yeast Saccharomyces cerevisiae.
    Kim JH, Rodriguez R.
    Biochim Biophys Acta Gen Subj; 2021 Jun 16; 1865(6):129881. PubMed ID: 33617932
    [Abstract] [Full Text] [Related]

  • 11. Transcription patterns of PMA1 and PMA2 genes and activity of plasma membrane H+-ATPase in Saccharomyces cerevisiae during diauxic growth and stationary phase.
    Fernandes AR, Sá-Correia I.
    Yeast; 2003 Feb 16; 20(3):207-19. PubMed ID: 12557274
    [Abstract] [Full Text] [Related]

  • 12. Glycolysis controls plasma membrane glucose sensors to promote glucose signaling in yeasts.
    Cairey-Remonnay A, Deffaud J, Wésolowski-Louvel M, Lemaire M, Soulard A.
    Mol Cell Biol; 2015 Feb 16; 35(4):747-57. PubMed ID: 25512610
    [Abstract] [Full Text] [Related]

  • 13. Specific phosphoantibodies reveal two phosphorylation sites in yeast Pma1 in response to glucose.
    Mazón MJ, Eraso P, Portillo F.
    FEMS Yeast Res; 2015 Aug 16; 15(5):fov030. PubMed ID: 26019146
    [Abstract] [Full Text] [Related]

  • 14. Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains.
    van Rooyen R, Hahn-Hägerdal B, La Grange DC, van Zyl WH.
    J Biotechnol; 2005 Nov 21; 120(3):284-95. PubMed ID: 16084620
    [Abstract] [Full Text] [Related]

  • 15. Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase.
    Piper PW, Ortiz-Calderon C, Holyoak C, Coote P, Cole M.
    Cell Stress Chaperones; 1997 Mar 21; 2(1):12-24. PubMed ID: 9250391
    [Abstract] [Full Text] [Related]

  • 16. Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism.
    van den Brink J, Canelas AB, van Gulik WM, Pronk JT, Heijnen JJ, de Winde JH, Daran-Lapujade P.
    Appl Environ Microbiol; 2008 Sep 21; 74(18):5710-23. PubMed ID: 18641162
    [Abstract] [Full Text] [Related]

  • 17. β-Oxidation and autophagy are critical energy providers during acute glucose depletion in Saccharomyces cerevisiae.
    Weber CA, Sekar K, Tang JH, Warmer P, Sauer U, Weis K.
    Proc Natl Acad Sci U S A; 2020 Jun 02; 117(22):12239-12248. PubMed ID: 32430326
    [Abstract] [Full Text] [Related]

  • 18. Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae.
    Ozcan S, Dover J, Johnston M.
    EMBO J; 1998 May 01; 17(9):2566-73. PubMed ID: 9564039
    [Abstract] [Full Text] [Related]

  • 19. Critical findings on the activation cascade of yeast plasma membrane H+-ATPase.
    Kotyk A, Lapathitis G, Horák J.
    FEMS Microbiol Lett; 2003 Sep 12; 226(1):175-80. PubMed ID: 13129624
    [Abstract] [Full Text] [Related]

  • 20. Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a β-glucosidase in Saccharomyces cerevisiae.
    Li S, Du J, Sun J, Galazka JM, Glass NL, Cate JH, Yang X, Zhao H.
    Mol Biosyst; 2010 Nov 12; 6(11):2129-32. PubMed ID: 20871937
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.