These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
205 related items for PubMed ID: 2879870
1. Lymphokine-activated killer (LAK) cells. II. Delineation of distinct murine LAK-precursor subpopulations. Ballas ZK, Rasmussen W, van Otegham JK. J Immunol; 1987 Mar 01; 138(5):1647-52. PubMed ID: 2879870 [Abstract] [Full Text] [Related]
2. Analysis of the murine lymphokine-activated killer (LAK) cell phenomenon: dissection of effectors and progenitors into NK- and T-like cells. Kalland T, Belfrage H, Bhiladvala P, Hedlund G. J Immunol; 1987 Jun 01; 138(11):3640-5. PubMed ID: 3495566 [Abstract] [Full Text] [Related]
3. Murine lymphokine-activated killer (LAK) cells: phenotypic characterization of the precursor and effector cells. Yang JC, Mulé JJ, Rosenberg SA. J Immunol; 1986 Jul 15; 137(2):715-22. PubMed ID: 2873187 [Abstract] [Full Text] [Related]
4. Precursor phenotype of lymphokine-activated killer cells in the mouse. Salup RR, Mathieson BJ, Wiltrout RH. J Immunol; 1987 Jun 01; 138(11):3635-9. PubMed ID: 3108370 [Abstract] [Full Text] [Related]
5. Suppression of alloimmune cytotoxic T lymphocyte (CTL) generation by depletion of NK cells and restoration by interferon and/or interleukin 2. Suzuki R, Suzuki S, Ebina N, Kumagai K. J Immunol; 1985 Apr 01; 134(4):2139-48. PubMed ID: 2579129 [Abstract] [Full Text] [Related]
6. Combined therapy of mice bearing a lymphokine-activated killer-resistant tumor with recombinant interleukin 2 and an antitumor monoclonal antibody capable of inducing antibody-dependent cellular cytotoxicity. Kawase I, Komuta K, Hara H, Inoue T, Hosoe S, Ikeda T, Shirasaka T, Yokota S, Tanio Y, Masuno T. Cancer Res; 1988 Mar 01; 48(5):1173-9. PubMed ID: 3257715 [Abstract] [Full Text] [Related]
7. Lymphokine-activated killer (LAK) cells. IV. Characterization of murine LAK effector subpopulations. Ballas ZK, Rasmussen W. J Immunol; 1990 Jan 01; 144(1):386-95. PubMed ID: 2104892 [Abstract] [Full Text] [Related]
8. Heterogeneity of long-term cultured activated killer cells induced by anti-T3 antibody. Yun YS, Hargrove ME, Ting CC. J Immunol; 1988 Aug 15; 141(4):1390-7. PubMed ID: 3260924 [Abstract] [Full Text] [Related]
9. IL-4-induced lymphokine-activated killer cells. Lytic activity is mediated by phenotypically distinct natural killer-like and T cell-like large granular lymphocytes. Peace DJ, Kern DE, Schultz KR, Greenberg PD, Cheever MA. J Immunol; 1988 May 15; 140(10):3679-85. PubMed ID: 2896213 [Abstract] [Full Text] [Related]
10. Human lymphokine-activated killer (LAK) cells: identification of two types of effector cells. Tilden AB, Itoh K, Balch CM. J Immunol; 1987 Feb 15; 138(4):1068-73. PubMed ID: 3100627 [Abstract] [Full Text] [Related]
11. The anti-tumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo: direct correlation between reduction of established metastases and cytolytic activity of lymphokine-activated killer cells. Mulé JJ, Yang J, Shu S, Rosenberg SA. J Immunol; 1986 May 15; 136(10):3899-909. PubMed ID: 2871106 [Abstract] [Full Text] [Related]
12. Induction of murine lymphokine-activated killer cells by recombinant IL-7. Lynch DH, Miller RE. J Immunol; 1990 Sep 15; 145(6):1983-90. PubMed ID: 1975262 [Abstract] [Full Text] [Related]
13. Expression of asialo GM1 and other antigens and glycolipids on natural killer cells and spleen leukocytes in virus-infected mice. Yang H, Yogeeswaran G, Bukowski JF, Welsh RM. Nat Immun Cell Growth Regul; 1985 Sep 15; 4(1):21-39. PubMed ID: 3875791 [Abstract] [Full Text] [Related]
14. Purification and target cell range of in vivo elicited blast natural killer cells. Biron CA, Pedersen KF, Welsh RM. J Immunol; 1986 Jul 15; 137(2):463-71. PubMed ID: 3722814 [Abstract] [Full Text] [Related]
15. Generation of large granular T lymphocytes in vivo during viral infection. Biron CA, Natuk RJ, Welsh RM. J Immunol; 1986 Mar 15; 136(6):2280-6. PubMed ID: 3485144 [Abstract] [Full Text] [Related]
16. Lymphokine-activated killer cells. VII. IL-4 induces an NK1.1+CD8 alpha+beta- TCR-alpha beta B220+ lymphokine-activated killer subset. Ballas ZK, Rasmussen W. J Immunol; 1993 Jan 01; 150(1):17-30. PubMed ID: 7678028 [Abstract] [Full Text] [Related]
17. Autocytotoxic activity of lymphokine-activated killer cells: characterization of effector cells and susceptible targets. Suzuki H, Ikemoto M, Kamitani T, Hoshino K, Yano S. Anticancer Res; 1989 Jan 01; 9(2):293-7. PubMed ID: 2568770 [Abstract] [Full Text] [Related]
18. Identification of cellular mechanisms operational in vivo during the regression of established pulmonary metastases by the systemic administration of high-dose recombinant interleukin 2. Mulé JJ, Yang JC, Afreniere RL, Shu SY, Rosenberg SA. J Immunol; 1987 Jul 01; 139(1):285-94. PubMed ID: 3108401 [Abstract] [Full Text] [Related]
19. Lymphokine-activated killer cells in rats: analysis of progenitor and effector cell phenotype and relationship to natural killer cells. Vujanovic NL, Herberman RB, Olszowy MW, Cramer DV, Salup RR, Reynolds CW, Hiserodt JC. Cancer Res; 1988 Feb 15; 48(4):884-90. PubMed ID: 3257412 [Abstract] [Full Text] [Related]
20. Lymphokine-induced cytotoxicity: characterization of effectors, precursors, and regulatory ancillary cells. Ting CC, Yang SS, Hargrove ME. Cancer Res; 1986 Feb 15; 46(2):513-8. PubMed ID: 3079663 [Abstract] [Full Text] [Related] Page: [Next] [New Search]