These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
127 related items for PubMed ID: 28800558
41. Influence of redox mediators and salinity level on the (bio)transformation of Direct Blue 71: kinetics aspects. Alvarez LH, Meza-Escalante ER, Gortáres-Moroyoqui P, Morales L, Rosas K, García-Reyes B, García-González A. J Environ Manage; 2016 Dec 01; 183():84-89. PubMed ID: 27576150 [Abstract] [Full Text] [Related]
43. Biocalalyst effects of immobilized anthraquinone on the anaerobic reduction of azo dyes by the salt-tolerant bacteria. Guo J, Zhou J, Wang D, Tian C, Wang P, Salah Uddin M, Yu H. Water Res; 2007 Jan 01; 41(2):426-32. PubMed ID: 17129594 [Abstract] [Full Text] [Related]
44. Biodecolorization of the azo dye Reactive Red 2 by a halotolerant enrichment culture. Beydilli MI, Pavlostathis SG. Water Environ Res; 2007 Nov 01; 79(12):2446-56. PubMed ID: 18044362 [Abstract] [Full Text] [Related]
45. Removal of C.I. Reactive Red 2 by low pressure UV/chlorine advanced oxidation. Wu Q, Li Y, Wang W, Wang T, Hu H. J Environ Sci (China); 2016 Mar 01; 41():227-234. PubMed ID: 26969069 [Abstract] [Full Text] [Related]
46. Enhancing the electron transfer capacity and subsequent color removal in bioreactors by applying thermophilic anaerobic treatment and redox mediators. dos Santos AB, Traverse J, Cervantes FJ, van Lier JB. Biotechnol Bioeng; 2005 Jan 05; 89(1):42-52. PubMed ID: 15558594 [Abstract] [Full Text] [Related]
47. Key factors regarding decolorization of synthetic anthraquinone and azo dyes. Boonyakamol A, Imai T, Chairattanamanokorn P, Higuchi T, Sekine M. Appl Biochem Biotechnol; 2009 Jul 05; 158(1):180-91. PubMed ID: 18679590 [Abstract] [Full Text] [Related]
48. Sustained generation of electricity by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2. Milliken CE, May HD. Appl Microbiol Biotechnol; 2007 Jan 05; 73(5):1180-9. PubMed ID: 17031638 [Abstract] [Full Text] [Related]
53. Performance of microbial fuel cells based on the operational parameters of biocathode during simultaneous Congo red decolorization and electricity generation. Hou B, Lu J, Wang H, Li Y, Liu P, Liu Y, Chen J. Bioelectrochemistry; 2019 Aug 05; 128():291-297. PubMed ID: 31059969 [Abstract] [Full Text] [Related]
55. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Cheng S, Logan BE. Bioresour Technol; 2011 Mar 05; 102(6):4468-73. PubMed ID: 21273062 [Abstract] [Full Text] [Related]
56. Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode. Ding H, Li Y, Lu A, Jin S, Quan C, Wang C, Wang X, Zeng C, Yan Y. Bioresour Technol; 2010 May 05; 101(10):3500-5. PubMed ID: 20093012 [Abstract] [Full Text] [Related]
57. Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer. Liu W, Cheng S, Sun D, Huang H, Chen J, Cen K. Biosens Bioelectron; 2015 Oct 15; 72():44-50. PubMed ID: 25957076 [Abstract] [Full Text] [Related]
58. Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs. Cheng S, Kiely P, Logan BE. Bioresour Technol; 2011 Jan 15; 102(1):367-71. PubMed ID: 20580223 [Abstract] [Full Text] [Related]