These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
242 related items for PubMed ID: 28801839
1. Biotransformation with cellulase, hemicellulase and Yarrowia lipolytica boosts health benefits of okara. Vong WC, Lim XY, Liu SQ. Appl Microbiol Biotechnol; 2017 Oct; 101(19):7129-7140. PubMed ID: 28801839 [Abstract] [Full Text] [Related]
2. Okara (soybean residue) biotransformation by yeast Yarrowia lipolytica. Vong WC, Au Yang KL, Liu SQ. Int J Food Microbiol; 2016 Oct 17; 235():1-9. PubMed ID: 27391864 [Abstract] [Full Text] [Related]
3. Changes in volatile profile of soybean residue (okara) upon solid-state fermentation by yeasts. Vong WC, Liu SQ. J Sci Food Agric; 2017 Jan 17; 97(1):135-143. PubMed ID: 26940283 [Abstract] [Full Text] [Related]
4. Erythritol production by Yarrowia lipolytica from okara pretreated with the in-house enzyme pools of fungi. Liu X, Yu X, Xia J, Lv J, Xu J, Dai B, Xu X, Xu J. Bioresour Technol; 2017 Nov 17; 244(Pt 1):1089-1095. PubMed ID: 28854485 [Abstract] [Full Text] [Related]
5. Sequential extraction of polysaccharides from enzymatically hydrolyzed okara byproduct: physicochemical properties and in vitro fermentability. Villanueva-Suárez MJ, Pérez-Cózar ML, Redondo-Cuenca A. Food Chem; 2013 Nov 15; 141(2):1114-9. PubMed ID: 23790893 [Abstract] [Full Text] [Related]
6. In vitro fermentability and prebiotic potential of soyabean Okara by human faecal microbiota. Pérez-López E, Cela D, Costabile A, Mateos-Aparicio I, Rupérez P. Br J Nutr; 2016 Sep 15; 116(6):1116-24. PubMed ID: 27469454 [Abstract] [Full Text] [Related]
7. Yarrowia lipolytica and Lactobacillus paracasei Solid State Fermentation as a Valuable Biotechnological Tool for the Pork Lard and Okara's Biotransformation. Cotârleț M, Stănciuc N, Bahrim GE. Microorganisms; 2020 Jul 22; 8(8):. PubMed ID: 32708033 [Abstract] [Full Text] [Related]
8. Impact of processing technologies on isoflavones, phenolic acids, and antioxidant capacities of soymilk prepared from 15 soybean varieties. Yu X, Meenu M, Xu B, Yu H. Food Chem; 2021 May 30; 345():128612. PubMed ID: 33352407 [Abstract] [Full Text] [Related]
9. A metabolomics approach to evaluate post-fermentation enhancement of daidzein and genistein in a green okara extract. Gupta S, Chen WN. J Sci Food Agric; 2021 Sep 30; 101(12):5124-5131. PubMed ID: 33608899 [Abstract] [Full Text] [Related]
10. Enzymatic high digestion of soybean milk residue (okara). Kasai N, Murata A, Inui H, Sakamoto T, Kahn RI. J Agric Food Chem; 2004 Sep 08; 52(18):5709-16. PubMed ID: 15373413 [Abstract] [Full Text] [Related]
11. Enzymatic pretreatment in the extraction process of soybean to improve protein and isoflavone recovery and to favor aglycone formation. Penha CB, Falcão HG, Ida EI, Speranza P, Kurozawa LE. Food Res Int; 2020 Nov 08; 137():109624. PubMed ID: 33233212 [Abstract] [Full Text] [Related]
12. Functionalization of soy residue (okara) by enzymatic hydrolysis and LAB fermentation for B2 bio-enrichment and improved in vitro digestion. Wang R, Thakur K, Feng JY, Zhu YY, Zhang F, Russo P, Spano G, Zhang JG, Wei ZJ. Food Chem; 2022 Sep 01; 387():132947. PubMed ID: 35427869 [Abstract] [Full Text] [Related]
13. Novel two-stage solid-state fermentation for erythritol production on okara-buckwheat husk medium. Liu X, Yu X, Zhang T, Wang Z, Xu J, Xia J, He A, Yan Y, Xu J. Bioresour Technol; 2018 Oct 01; 266():439-446. PubMed ID: 30005411 [Abstract] [Full Text] [Related]
14. Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing. Anderson RL, Wolf WJ. J Nutr; 1995 Mar 01; 125(3 Suppl):581S-588S. PubMed ID: 7884537 [Abstract] [Full Text] [Related]
15. Saccharification of Okara fiber by plant dietary fiber hydrolases. Matsuo M. J Nutr Sci Vitaminol (Tokyo); 2004 Aug 01; 50(4):291-4. PubMed ID: 15527073 [Abstract] [Full Text] [Related]
16. Combined isoflavones biotransformation increases the bioactive and antioxidant capacity of soymilk. de Queirós LD, de Ávila ARA, Botaro AV, Chirotto DBL, Macedo JA, Macedo GA. Appl Microbiol Biotechnol; 2020 Dec 01; 104(23):10019-10031. PubMed ID: 33136177 [Abstract] [Full Text] [Related]
17. Comparative nutritional and antimicrobial analysis of Himalayan black and yellow soybean and their okara. Anjum S, Rana S, Dasila K, Agnihotri V, Pandey A, Pande V. J Sci Food Agric; 2022 Sep 01; 102(12):5358-5367. PubMed ID: 35318666 [Abstract] [Full Text] [Related]
18. Antioxidant capacity of seed coat, dehulled bean, and whole black soybeans in relation to their distributions of total phenolics, phenolic acids, anthocyanins, and isoflavones. Xu B, Chang SK. J Agric Food Chem; 2008 Sep 24; 56(18):8365-73. PubMed ID: 18729453 [Abstract] [Full Text] [Related]
19. Utilization of okara, a byproduct from soymilk production, through the development of soy-based snack food. Katayama M, Wilson LA. J Food Sci; 2008 Apr 24; 73(3):S152-7. PubMed ID: 18387128 [Abstract] [Full Text] [Related]
20. Targeted metabolomics for Aspergillus oryzae-mediated biotransformation of soybean isoflavones, showing variations in primary metabolites. Lee S, Seo MH, Oh DK, Lee CH. Biosci Biotechnol Biochem; 2014 Apr 24; 78(1):167-74. PubMed ID: 25036500 [Abstract] [Full Text] [Related] Page: [Next] [New Search]