These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
471 related items for PubMed ID: 28808815
1. Physiological responses and antioxidant enzyme changes in Sulla coronaria inoculated by cadmium resistant bacteria. Chiboub M, Jebara SH, Saadani O, Fatnassi IC, Abdelkerim S, Jebara M. J Plant Res; 2018 Jan; 131(1):99-110. PubMed ID: 28808815 [Abstract] [Full Text] [Related]
2. Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals. Chiboub M, Saadani O, Fatnassi IC, Abdelkrim S, Abid G, Jebara M, Jebara SH. C R Biol; 2016 Jan; 339(9-10):391-8. PubMed ID: 27498183 [Abstract] [Full Text] [Related]
4. Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria. Abdelkrim S, Jebara SH, Saadani O, Chiboub M, Abid G, Mannai K, Jebara M. Arch Microbiol; 2019 Jan; 201(1):107-121. PubMed ID: 30276423 [Abstract] [Full Text] [Related]
7. Influence of endophytic root bacteria on the growth, cadmium tolerance and uptake of switchgrass (Panicum virgatum L.). Afzal S, Begum N, Zhao H, Fang Z, Lou L, Cai Q. J Appl Microbiol; 2017 Aug; 123(2):498-510. PubMed ID: 28581636 [Abstract] [Full Text] [Related]
8. In situ phytostabilisation capacity of three legumes and their associated Plant Growth Promoting Bacteria (PGPBs) in mine tailings of northern Tunisia. Saadani O, Fatnassi IC, Chiboub M, Abdelkrim S, Barhoumi F, Jebara M, Jebara SH. Ecotoxicol Environ Saf; 2016 Aug; 130():263-9. PubMed ID: 27151677 [Abstract] [Full Text] [Related]
9. Effect of Vicia faba L. var. minor and Sulla coronaria (L.) Medik associated with plant growth-promoting bacteria on lettuce cropping system and heavy metal phytoremediation under field conditions. Saadani O, Jebara SH, Fatnassi IC, Chiboub M, Mannai K, Zarrad I, Jebara M. Environ Sci Pollut Res Int; 2019 Mar; 26(8):8125-8135. PubMed ID: 30693447 [Abstract] [Full Text] [Related]
10. Bacteria associated with yellow lupine grown on a metal-contaminated soil: in vitro screening and in vivo evaluation for their potential to enhance Cd phytoextraction. Weyens N, Gielen M, Beckers B, Boulet J, van der Lelie D, Taghavi S, Carleer R, Vangronsveld J. Plant Biol (Stuttg); 2014 Sep; 16(5):988-96. PubMed ID: 24400887 [Abstract] [Full Text] [Related]
11. Enhanced phytostabilization of cadmium by a halophyte-Acanthus ilicifolius L. Shackira AM, Puthur JT. Int J Phytoremediation; 2017 Apr 03; 19(4):319-326. PubMed ID: 27593613 [Abstract] [Full Text] [Related]
12. The endophytic bacterium Sphingomonas SaMR12 alleviates Cd stress in oilseed rape through regulation of the GSH-AsA cycle and antioxidative enzymes. Wang Q, Ge C, Xu S, Wu Y, Sahito ZA, Ma L, Pan F, Zhou Q, Huang L, Feng Y, Yang X. BMC Plant Biol; 2020 Feb 06; 20(1):63. PubMed ID: 32028891 [Abstract] [Full Text] [Related]
13. Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ju W, Liu L, Fang L, Cui Y, Duan C, Wu H. Ecotoxicol Environ Saf; 2019 Jan 15; 167():218-226. PubMed ID: 30342354 [Abstract] [Full Text] [Related]
15. Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising agents for elevated phytoremediation efficiency. Wang Q, Ma L, Zhou Q, Chen B, Zhang X, Wu Y, Pan F, Huang L, Yang X, Feng Y. Chemosphere; 2019 Nov 15; 234():769-776. PubMed ID: 31238273 [Abstract] [Full Text] [Related]
16. Inoculation of Lens culinaris with Pb-resistant bacteria shows potential for phytostabilization. Jebara SH, Saadani O, Fatnassi IC, Chiboub M, Abdelkrim S, Jebara M. Environ Sci Pollut Res Int; 2015 Feb 15; 22(4):2537-45. PubMed ID: 25185494 [Abstract] [Full Text] [Related]
17. Isolation and engineering of plant growth promoting rhizobacteria Pseudomonas aeruginosa for enhanced cadmium bioremediation. Huang J, Liu Z, Li S, Xu B, Gong Y, Yang Y, Sun H. J Gen Appl Microbiol; 2016 Nov 25; 62(5):258-265. PubMed ID: 27725404 [Abstract] [Full Text] [Related]
18. Phytostabilization of moderate copper contaminated soils using co-inoculation of Vicia faba with plant growth promoting bacteria. Fatnassi IC, Chiboub M, Saadani O, Jebara M, Jebara SH. J Basic Microbiol; 2015 Mar 25; 55(3):303-11. PubMed ID: 24338717 [Abstract] [Full Text] [Related]
19. Cadmium Partitioning, Physiological and Oxidative Stress Responses in Marigold (Calendula calypso) Grown on Contaminated Soil: Implications for Phytoremediation. Farooq A, Nadeem M, Abbas G, Shabbir A, Khalid MS, Javeed HMR, Saeed MF, Akram A, Younis A, Akhtar G. Bull Environ Contam Toxicol; 2020 Aug 25; 105(2):270-276. PubMed ID: 32661664 [Abstract] [Full Text] [Related]
20. Enhancing phytoextraction of Cd by combining poplar (clone "I-214") with Pseudomonas fluorescens and microbial consortia. Cocozza C, Vitullo D, Lima G, Maiuro L, Marchetti M, Tognetti R. Environ Sci Pollut Res Int; 2014 Feb 25; 21(3):1796-1808. PubMed ID: 23979851 [Abstract] [Full Text] [Related] Page: [Next] [New Search]