These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
213 related items for PubMed ID: 28810234
21. Aptamer-Au NPs conjugates-accumulated methylene blue for the sensitive electrochemical immunoassay of protein. Wang J, Munir A, Li Z, Zhou HS. Talanta; 2010 Apr 15; 81(1-2):63-7. PubMed ID: 20188888 [Abstract] [Full Text] [Related]
22. Exonuclease-Catalyzed Target Recycling Amplification and Immobilization-free Electrochemical Aptasensor. Tan Y, Wei X, Zhang Y, Wang P, Qiu B, Guo L, Lin Z, Yang HH. Anal Chem; 2015 Dec 01; 87(23):11826-31. PubMed ID: 26542113 [Abstract] [Full Text] [Related]
23. Dual recognition unit strategy improves the specificity of the adenosine triphosphate (ATP) aptamer biosensor for cerebral ATP assay. Yu P, He X, Zhang L, Mao L. Anal Chem; 2015 Jan 20; 87(2):1373-80. PubMed ID: 25495279 [Abstract] [Full Text] [Related]
24. A repeatable assembling and disassembling electrochemical aptamer cytosensor for ultrasensitive and highly selective detection of human liver cancer cells. Sun D, Lu J, Chen Z, Yu Y, Mo M. Anal Chim Acta; 2015 Jul 23; 885():166-73. PubMed ID: 26231902 [Abstract] [Full Text] [Related]
25. Enhancing the response rate of strand displacement-based electrochemical aptamer sensors using bivalent binding aptamer-cDNA probes. Zhang Z, Tao C, Yin J, Wang Y, Li Y. Biosens Bioelectron; 2018 Apr 30; 103():39-44. PubMed ID: 29278811 [Abstract] [Full Text] [Related]
26. Electrochemical current rectification-a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor. Feng L, Sivanesan A, Lyu Z, Offenhäusser A, Mayer D. Biosens Bioelectron; 2015 Apr 15; 66():62-8. PubMed ID: 25460883 [Abstract] [Full Text] [Related]
27. A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles. Huo Y, Qi L, Lv XJ, Lai T, Zhang J, Zhang ZQ. Biosens Bioelectron; 2016 Apr 15; 78():315-320. PubMed ID: 26638040 [Abstract] [Full Text] [Related]
28. Electrochemical Analysis of Target-Induced Hairpin-Mediated Aptamer Sensors. Su S, Ma J, Xu Y, Pan H, Zhu D, Chao J, Weng L, Wang L. ACS Appl Mater Interfaces; 2020 Oct 21; 12(42):48133-48139. PubMed ID: 32955243 [Abstract] [Full Text] [Related]
33. Thermo-responsive molecular switches for ATP using hairpin DNA aptamers. Goda T, Miyahara Y. Biosens Bioelectron; 2011 May 15; 26(9):3949-52. PubMed ID: 21419618 [Abstract] [Full Text] [Related]
34. Target-Triggered Assembly in a Nanopipette for Electrochemical Single-Cell Analysis. Ruan YF, Wang HY, Shi XM, Xu YT, Yu XD, Zhao WW, Chen HY, Xu JJ. Anal Chem; 2021 Jan 19; 93(2):1200-1208. PubMed ID: 33301293 [Abstract] [Full Text] [Related]
35. A new electrochemical aptasensor based on electrocatalytic property of graphene toward ascorbic acid oxidation. Wu L, Xiong E, Yao Y, Zhang X, Zhang X, Chen J. Talanta; 2015 Mar 19; 134():699-704. PubMed ID: 25618724 [Abstract] [Full Text] [Related]
36. Label-free and reagentless aptamer-based sensors for small molecules. Zayats M, Huang Y, Gill R, Ma CA, Willner I. J Am Chem Soc; 2006 Oct 25; 128(42):13666-7. PubMed ID: 17044676 [Abstract] [Full Text] [Related]
40. Immobilization Strategies for Enhancing Sensitivity of Electrochemical Aptamer-Based Sensors. Liu Y, Canoura J, Alkhamis O, Xiao Y. ACS Appl Mater Interfaces; 2021 Mar 03; 13(8):9491-9499. PubMed ID: 33448791 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]