These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
213 related items for PubMed ID: 28810234
61. Nicking endonuclease-assisted recycling of target-aptamer complex for sensitive electrochemical detection of adenosine triphosphate. Hu T, Wen W, Zhang X, Wang S. Analyst; 2016 Feb 21; 141(4):1506-11. PubMed ID: 26815141 [Abstract] [Full Text] [Related]
62. A sensitive quartz crystal microbalance assay of adenosine triphosphate via DNAzyme-activated and aptamer-based target-triggering circular amplification. Song W, Zhu Z, Mao Y, Zhang S. Biosens Bioelectron; 2014 Mar 15; 53():288-94. PubMed ID: 24161526 [Abstract] [Full Text] [Related]
63. Magnetic gold nanocomposite and aptamer assisted triple recognition electrochemical immunoassay for determination of brain natriuretic peptide. Zhao J, Zhu ZZ, Huang X, Hu X, Chen H. Mikrochim Acta; 2020 Mar 16; 187(4):231. PubMed ID: 32180025 [Abstract] [Full Text] [Related]
64. Engineering Biosensors with Dual Programmable Dynamic Ranges. Wei B, Zhang J, Ou X, Lou X, Xia F, Vallée-Bélisle A. Anal Chem; 2018 Feb 06; 90(3):1506-1510. PubMed ID: 29300471 [Abstract] [Full Text] [Related]
65. DNA aptamers selection and characterization for development of label-free impedimetric aptasensor for neurotoxin anatoxin-a. Elshafey R, Siaj M, Zourob M. Biosens Bioelectron; 2015 Jun 15; 68():295-302. PubMed ID: 25594161 [Abstract] [Full Text] [Related]
66. A selective amperometric sensing platform for lead based on target-induced strand release. Li F, Yang L, Chen M, Li P, Tang B. Analyst; 2013 Jan 21; 138(2):461-6. PubMed ID: 23166909 [Abstract] [Full Text] [Related]
67. Homogeneous electrochemical aptamer-based ATP assay with signal amplification by exonuclease III assisted target recycling. Liu S, Wang Y, Zhang C, Lin Y, Li F. Chem Commun (Camb); 2013 Mar 21; 49(23):2335-7. PubMed ID: 23403496 [Abstract] [Full Text] [Related]
68. Highly selective and sensitive electrochemical biosensor for ATP based on the dual strategy integrating the cofactor-dependent enzymatic ligation reaction with self-cleaving DNAzyme-amplified electrochemical detection. Lu L, Si JC, Gao ZF, Zhang Y, Lei JL, Luo HQ, Li NB. Biosens Bioelectron; 2015 Jan 15; 63():14-20. PubMed ID: 25048448 [Abstract] [Full Text] [Related]
69. A sensitive nanoporous gold-based electrochemical aptasensor for thrombin detection. Qiu H, Sun Y, Huang X, Qu Y. Colloids Surf B Biointerfaces; 2010 Aug 01; 79(1):304-8. PubMed ID: 20452755 [Abstract] [Full Text] [Related]
70. Electrochemical aptamer sensor for small molecule assays. Liu X, Li W, Xu X, Zhou J, Nie Z. Methods Mol Biol; 2012 Aug 01; 800():119-32. PubMed ID: 21964786 [Abstract] [Full Text] [Related]
71. Silica nanoparticles based label-free aptamer hybridization for ATP detection using hoechst33258 as the signal reporter. Cai L, Chen ZZ, Dong XM, Tang HW, Pang DW. Biosens Bioelectron; 2011 Nov 15; 29(1):46-52. PubMed ID: 21903375 [Abstract] [Full Text] [Related]
72. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5'-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes. Gao Z, Qiu Z, Lu M, Shu J, Tang D. Biosens Bioelectron; 2017 Mar 15; 89(Pt 2):1006-1012. PubMed ID: 27825528 [Abstract] [Full Text] [Related]
73. Metal sulfide-functionalized DNA concatamer for ultrasensitive electronic monitoring of ATP using a programmable capillary-based aptasensor. Liu B, Zhang B, Chen G, Yang H, Tang D. Biosens Bioelectron; 2014 Mar 15; 53():390-8. PubMed ID: 24201002 [Abstract] [Full Text] [Related]
74. Dual-Target Electrochemical Biosensing Based on DNA Structural Switching on Gold Nanoparticle-Decorated MoS2 Nanosheets. Su S, Sun H, Cao W, Chao J, Peng H, Zuo X, Yuwen L, Fan C, Wang L. ACS Appl Mater Interfaces; 2016 Mar 23; 8(11):6826-33. PubMed ID: 26938994 [Abstract] [Full Text] [Related]
75. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags. Zhou Q, Lin Y, Lin Y, Wei Q, Chen G, Tang D. Talanta; 2016 Mar 23; 146():23-8. PubMed ID: 26695229 [Abstract] [Full Text] [Related]
76. Electrochemical Nanoaptasensor for Continuous Monitoring of ATP Fluctuation at Subcellular Level. Zheng J, Li X, Wang K, Song J, Qi H. Anal Chem; 2020 Aug 18; 92(16):10940-10945. PubMed ID: 32700526 [Abstract] [Full Text] [Related]
77. Label-free aptamer-based electrochemical impedance biosensor for 17β-estradiol. Lin Z, Chen L, Zhang G, Liu Q, Qiu B, Cai Z, Chen G. Analyst; 2012 Feb 21; 137(4):819-22. PubMed ID: 22158706 [Abstract] [Full Text] [Related]
78. A signal-on electrochemical probe-label-free aptasensor using gold-platinum alloy and stearic acid as enhancers. Yuan Y, Yuan R, Chai Y, Zhuo Y, Bai L, Liao Y. Biosens Bioelectron; 2010 Oct 15; 26(2):881-5. PubMed ID: 20708400 [Abstract] [Full Text] [Related]
79. Ultrasensitive one-step rapid detection of ochratoxin A by the folding-based electrochemical aptasensor. Wu J, Chu H, Mei Z, Deng Y, Xue F, Zheng L, Chen W. Anal Chim Acta; 2012 Nov 13; 753():27-31. PubMed ID: 23107133 [Abstract] [Full Text] [Related]
80. Fabricated aptamer-based electrochemical "signal-off" sensor of ochratoxin A. Kuang H, Chen W, Xu D, Xu L, Zhu Y, Liu L, Chu H, Peng C, Xu C, Zhu S. Biosens Bioelectron; 2010 Oct 15; 26(2):710-6. PubMed ID: 20643539 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]