These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


422 related items for PubMed ID: 28817360

  • 1. Closing the Gap: Mouse Models to Study Adhesion in Secondary Palatogenesis.
    Lough KJ, Byrd KM, Spitzer DC, Williams SE.
    J Dent Res; 2017 Oct; 96(11):1210-1220. PubMed ID: 28817360
    [Abstract] [Full Text] [Related]

  • 2. Modulating Wnt Signaling Rescues Palate Morphogenesis in Pax9 Mutant Mice.
    Li C, Lan Y, Krumlauf R, Jiang R.
    J Dent Res; 2017 Oct; 96(11):1273-1281. PubMed ID: 28692808
    [Abstract] [Full Text] [Related]

  • 3. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion.
    Xu X, Han J, Ito Y, Bringas P, Urata MM, Chai Y.
    Dev Biol; 2006 Sep 01; 297(1):238-48. PubMed ID: 16780827
    [Abstract] [Full Text] [Related]

  • 4. Cellular and Molecular Mechanisms of Palatogenesis.
    Lan Y, Xu J, Jiang R.
    Curr Top Dev Biol; 2015 Sep 01; 115():59-84. PubMed ID: 26589921
    [Abstract] [Full Text] [Related]

  • 5. Molecular contribution to cleft palate production in cleft lip mice.
    Sasaki Y, Taya Y, Saito K, Fujita K, Aoba T, Fujiwara T.
    Congenit Anom (Kyoto); 2014 May 01; 54(2):94-9. PubMed ID: 24206222
    [Abstract] [Full Text] [Related]

  • 6. Pbx loss in cranial neural crest, unlike in epithelium, results in cleft palate only and a broader midface.
    Welsh IC, Hart J, Brown JM, Hansen K, Rocha Marques M, Aho RJ, Grishina I, Hurtado R, Herzlinger D, Ferretti E, Garcia-Garcia MJ, Selleri L.
    J Anat; 2018 Aug 01; 233(2):222-242. PubMed ID: 29797482
    [Abstract] [Full Text] [Related]

  • 7. Periderm: Life-cycle and function during orofacial and epidermal development.
    Hammond NL, Dixon J, Dixon MJ.
    Semin Cell Dev Biol; 2019 Jul 01; 91():75-83. PubMed ID: 28803895
    [Abstract] [Full Text] [Related]

  • 8. Mouse models in palate development and orofacial cleft research: Understanding the crucial role and regulation of epithelial integrity in facial and palate morphogenesis.
    Lan Y, Jiang R.
    Curr Top Dev Biol; 2022 Jul 01; 148():13-50. PubMed ID: 35461563
    [Abstract] [Full Text] [Related]

  • 9. Face morphogenesis is promoted by Pbx-dependent EMT via regulation of Snail1 during frontonasal prominence fusion.
    Losa M, Risolino M, Li B, Hart J, Quintana L, Grishina I, Yang H, Choi IF, Lewicki P, Khan S, Aho R, Feenstra J, Vincent CT, Brown AMC, Ferretti E, Williams T, Selleri L.
    Development; 2018 Mar 01; 145(5):. PubMed ID: 29437830
    [Abstract] [Full Text] [Related]

  • 10. Morphological observations in normal primary palate and cleft lip embryos in the Kyoto collection.
    Diewert VM, Shiota K.
    Teratology; 1990 Jun 01; 41(6):663-77. PubMed ID: 2353315
    [Abstract] [Full Text] [Related]

  • 11. Cleft lip and cleft palate in Esrp1 knockout mice is associated with alterations in epithelial-mesenchymal crosstalk.
    Lee S, Sears MJ, Zhang Z, Li H, Salhab I, Krebs P, Xing Y, Nah HD, Williams T, Carstens RP.
    Development; 2020 Apr 30; 147(21):. PubMed ID: 32253237
    [Abstract] [Full Text] [Related]

  • 12. Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development.
    Bush JO, Jiang R.
    Development; 2012 Jan 30; 139(2):231-43. PubMed ID: 22186724
    [Abstract] [Full Text] [Related]

  • 13. Development of the upper lip: morphogenetic and molecular mechanisms.
    Jiang R, Bush JO, Lidral AC.
    Dev Dyn; 2006 May 30; 235(5):1152-66. PubMed ID: 16292776
    [Abstract] [Full Text] [Related]

  • 14. Altered FGF Signaling Pathways Impair Cell Proliferation and Elevation of Palate Shelves.
    Wu W, Gu S, Sun C, He W, Xie X, Li X, Ye W, Qin C, Chen Y, Xiao J, Liu C.
    PLoS One; 2015 May 30; 10(9):e0136951. PubMed ID: 26332583
    [Abstract] [Full Text] [Related]

  • 15. Molecular and Cellular Mechanisms of Palate Development.
    Li C, Lan Y, Jiang R.
    J Dent Res; 2017 Oct 30; 96(11):1184-1191. PubMed ID: 28745929
    [Abstract] [Full Text] [Related]

  • 16. Palatal fusion - where do the midline cells go? A review on cleft palate, a major human birth defect.
    Dudas M, Li WY, Kim J, Yang A, Kaartinen V.
    Acta Histochem; 2007 Oct 30; 109(1):1-14. PubMed ID: 16962647
    [Abstract] [Full Text] [Related]

  • 17. Biological mechanisms in palatogenesis and cleft palate.
    Meng L, Bian Z, Torensma R, Von den Hoff JW.
    J Dent Res; 2009 Jan 30; 88(1):22-33. PubMed ID: 19131313
    [Abstract] [Full Text] [Related]

  • 18. An in vitro mouse model of cleft palate: defining a critical intershelf distance necessary for palatal clefting.
    Erfani S, Maldonado TS, Crisera CA, Warren SM, Lee S, Longaker MT.
    Plast Reconstr Surg; 2001 Aug 30; 108(2):403-10. PubMed ID: 11496182
    [Abstract] [Full Text] [Related]

  • 19. Ablation of the Sox11 Gene Results in Clefting of the Secondary Palate Resembling the Pierre Robin Sequence.
    Huang H, Yang X, Bao M, Cao H, Miao X, Zhang X, Gan L, Qiu M, Zhang Z.
    J Biol Chem; 2016 Mar 25; 291(13):7107-18. PubMed ID: 26826126
    [Abstract] [Full Text] [Related]

  • 20. Association between palatal morphogenesis and Pax9 expression pattern in CL/Fr embryos with clefting during palatal development.
    Hamachi T, Sasaki Y, Hidaka K, Nakata M.
    Arch Oral Biol; 2003 Aug 25; 48(8):581-7. PubMed ID: 12828987
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.