These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


310 related items for PubMed ID: 2881777

  • 1. Control of aldosterone production by angiotensin II is mediated by two guanine nucleotide regulatory proteins.
    Hausdorff WP, Sekura RD, Aguilera G, Catt KJ.
    Endocrinology; 1987 Apr; 120(4):1668-78. PubMed ID: 2881777
    [Abstract] [Full Text] [Related]

  • 2. Angiotensin II receptor recognized by DuP753 regulates two distinct guanine nucleotide-binding protein signaling pathways.
    Crawford KW, Frey EA, Cote TE.
    Mol Pharmacol; 1992 Jan; 41(1):154-62. PubMed ID: 1310139
    [Abstract] [Full Text] [Related]

  • 3. Adenylate cyclase inhibition is not involved in the adrenal steroidogenic response to angiotensin II.
    Woodcock EA, McLeod JK.
    Endocrinology; 1986 Oct; 119(4):1697-702. PubMed ID: 3019640
    [Abstract] [Full Text] [Related]

  • 4. Participation of voltage-dependent calcium channels in the regulation of adrenal glomerulosa function by angiotensin II and potassium.
    Aguilera G, Catt KJ.
    Endocrinology; 1986 Jan; 118(1):112-8. PubMed ID: 2416549
    [Abstract] [Full Text] [Related]

  • 5. Angiotensin II receptors and mechanisms of action in adrenal glomerulosa cells.
    Catt KJ, Carson MC, Hausdorff WP, Leach-Harper CM, Baukal AJ, Guillemette G, Balla T, Aguilera G.
    J Steroid Biochem; 1987 Jan; 27(4-6):915-27. PubMed ID: 2826911
    [Abstract] [Full Text] [Related]

  • 6. Angiotensin II receptor subtypes and biological responses in the adrenal cortex and medulla.
    Balla T, Baukal AJ, Eng S, Catt KJ.
    Mol Pharmacol; 1991 Sep; 40(3):401-6. PubMed ID: 1654513
    [Abstract] [Full Text] [Related]

  • 7. Angiotensin II and guanine nucleotides stimulate formation of inositol 1,4,5-trisphosphate and its metabolites in permeabilized adrenal glomerulosa cells.
    Baukal AJ, Balla T, Hunyady L, Hausdorff W, Guillemette G, Catt KJ.
    J Biol Chem; 1988 May 05; 263(13):6087-92. PubMed ID: 3283118
    [Abstract] [Full Text] [Related]

  • 8. Pertussis toxin blocks somatostatin inhibition of calcium mobilization and reduces the affinity of somatostatin receptors for agonists.
    Reisine T, Guild S.
    J Pharmacol Exp Ther; 1985 Dec 05; 235(3):551-7. PubMed ID: 2867203
    [Abstract] [Full Text] [Related]

  • 9. Direct inhibitory effects of a somatostatin analog, SMS 201-995, on AR4-2J cell proliferation via pertussis toxin-sensitive guanosine triphosphate-binding protein-independent mechanism.
    Viguerie N, Tahiri-Jouti N, Ayral AM, Cambillau C, Scemama JL, Bastié MJ, Knuhtsen S, Estève JP, Pradayrol L, Susini C.
    Endocrinology; 1989 Feb 05; 124(2):1017-25. PubMed ID: 2563240
    [Abstract] [Full Text] [Related]

  • 10. The role of cyclic nucleotides in atrial natriuretic peptide-mediated inhibition of aldosterone secretion.
    Barrett PQ, Isales CM.
    Endocrinology; 1988 Mar 05; 122(3):799-808. PubMed ID: 2830096
    [Abstract] [Full Text] [Related]

  • 11. Neurotensin-mediated inhibition of cyclic AMP formation in neuroblastoma N1E115 cells: involvement of the inhibitory GTP-binding component of adenylate cyclase.
    Bozou JC, Amar S, Vincent JP, Kitabgi P.
    Mol Pharmacol; 1986 May 05; 29(5):489-96. PubMed ID: 3010077
    [Abstract] [Full Text] [Related]

  • 12. Adenosine inhibition of the hormonal response in the Sertoli cell is reversed by pertussis toxin.
    Monaco L, DeManno DA, Martin MW, Conti M.
    Endocrinology; 1988 Jun 05; 122(6):2692-8. PubMed ID: 2836171
    [Abstract] [Full Text] [Related]

  • 13. Inhibitory actions of somatostatin on cyclic AMP and aldosterone production in agonist-stimulated adrenal glomerulosa cells.
    Hausdorff WP, Aguilera G, Catt KJ.
    Cell Signal; 1989 Jun 05; 1(4):377-86. PubMed ID: 2484436
    [Abstract] [Full Text] [Related]

  • 14. Pertussis toxin treatment blocks the inhibition of somatostatin and increases the stimulation by forskolin of cyclic AMP accumulation and adrenocorticotropin secretion from mouse anterior pituitary tumor cells.
    Reisine T, Zhang YL, Sekura R.
    J Pharmacol Exp Ther; 1985 Jan 05; 232(1):275-82. PubMed ID: 2856941
    [Abstract] [Full Text] [Related]

  • 15. Selective enhancement of angiotensin II- and potassium-stimulated aldosterone secretion by the calcium channel agonist BAY K 8644.
    Hausdorff WP, Aguilera G, Catt KJ.
    Endocrinology; 1986 Feb 05; 118(2):869-74. PubMed ID: 2417828
    [Abstract] [Full Text] [Related]

  • 16. Interaction between serotonin and other regulators of aldosterone secretion in rat adrenal glomerulosa cells.
    Rocco S, Ambroz C, Aguilera G.
    Endocrinology; 1990 Dec 05; 127(6):3103-10. PubMed ID: 2174345
    [Abstract] [Full Text] [Related]

  • 17. Dependence of aldosterone stimulation in adrenal glomerulosa cells on calcium uptake: effects of lanthanum nd verapamil.
    Fakunding JL, Catt KJ.
    Endocrinology; 1980 Nov 05; 107(5):1345-53. PubMed ID: 6253264
    [Abstract] [Full Text] [Related]

  • 18. Dopaminergic modulation of aldosterone secretion in the rat.
    Aguilera G, Catt KJ.
    Endocrinology; 1984 Jan 05; 114(1):176-81. PubMed ID: 6317344
    [Abstract] [Full Text] [Related]

  • 19. Angiotensin II receptors and inhibitory actions in Leydig cells.
    Khanum A, Dufau ML.
    J Biol Chem; 1988 Apr 15; 263(11):5070-4. PubMed ID: 2833494
    [Abstract] [Full Text] [Related]

  • 20. Stimulatory effect of insulin and insulin-like growth factor I on Gi proteins and angiotensin-II-induced phosphoinositide breakdown in cultured bovine adrenal cells.
    Langlois D, Hinsch KD, Saez JM, Begeot M.
    Endocrinology; 1990 Apr 15; 126(4):1867-72. PubMed ID: 2156669
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.