These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


476 related items for PubMed ID: 28828557

  • 21. Effect of UV irradiation on the aggregation of TiO2 in an aquatic environment: Influence of humic acid and pH.
    Wang P, Qi N, Ao Y, Hou J, Wang C, Qian J.
    Environ Pollut; 2016 May; 212():178-187. PubMed ID: 26845365
    [Abstract] [Full Text] [Related]

  • 22. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.
    Loosli F, Le Coustumer P, Stoll S.
    Water Res; 2013 Oct 15; 47(16):6052-63. PubMed ID: 23969399
    [Abstract] [Full Text] [Related]

  • 23. Environmentally relevant impacts of nano-TiO2 on abiotic degradation of bisphenol A under sunlight irradiation.
    Wu W, Shan G, Wang S, Zhu L, Yue L, Xiang Q, Zhang Y, Li Z.
    Environ Pollut; 2016 Sep 15; 216():166-172. PubMed ID: 27262130
    [Abstract] [Full Text] [Related]

  • 24. Effects of humic acids on the aggregation and sorption of nano-TiO2.
    Li Y, Yang C, Guo X, Dang Z, Li X, Zhang Q.
    Chemosphere; 2015 Jan 15; 119():171-176. PubMed ID: 24992218
    [Abstract] [Full Text] [Related]

  • 25. Effect of a typical antibiotic (tetracycline) on the aggregation of TiO2 nanoparticles in an aquatic environment.
    Qi N, Wang P, Wang C, Ao Y.
    J Hazard Mater; 2018 Jan 05; 341():187-197. PubMed ID: 28780433
    [Abstract] [Full Text] [Related]

  • 26. Aggregate morphology of nano-TiO2: role of primary particle size, solution chemistry, and organic matter.
    Chowdhury I, Walker SL, Mylon SE.
    Environ Sci Process Impacts; 2013 Jan 05; 15(1):275-82. PubMed ID: 24592445
    [Abstract] [Full Text] [Related]

  • 27. Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria.
    Chowdhury I, Cwiertny DM, Walker SL.
    Environ Sci Technol; 2012 Jul 03; 46(13):6968-76. PubMed ID: 22455349
    [Abstract] [Full Text] [Related]

  • 28. Impact of sunlight and humic acid on the deposition kinetics of aqueous fullerene nanoparticles (nC60).
    Qu X, Alvarez PJ, Li Q.
    Environ Sci Technol; 2012 Dec 18; 46(24):13455-62. PubMed ID: 23157776
    [Abstract] [Full Text] [Related]

  • 29. Effects of ionic strength and temperature on the aggregation and deposition of multi-walled carbon nanotubes.
    Wang L, Yang X, Wang Q, Zeng Y, Ding L, Jiang W.
    J Environ Sci (China); 2017 Jan 18; 51():248-255. PubMed ID: 28115136
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Influence of macromolecules on aggregation kinetics of diesel soot nanoparticles in aquatic environments.
    Chen C, Wei J, Li J, Duan Z, Huang W.
    Environ Pollut; 2019 Sep 18; 252(Pt B):1892-1901. PubMed ID: 31227348
    [Abstract] [Full Text] [Related]

  • 32. Aggregation of TiO2-graphene nanocomposites in aqueous environment: Influence of environmental factors and UV irradiation.
    Hua Z, Zhang J, Bai X, Ye Z, Tang Z, Liang L, Liu Y.
    Sci Total Environ; 2016 Jan 01; 539():196-205. PubMed ID: 26360460
    [Abstract] [Full Text] [Related]

  • 33. Impacts of Sediment Organic Matter Content and pH on Ecotoxicity of Coexposure of TiO2 Nanoparticles and Cadmium to Freshwater Snails Bellamya aeruginosa.
    Ma T, Wang M, Gong S, Tian B.
    Arch Environ Contam Toxicol; 2017 Jan 01; 72(1):153-165. PubMed ID: 27904922
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Effect of titanium dioxide nanoparticles on copper toxicity to Daphnia magna in water: Role of organic matter.
    Fan W, Peng R, Li X, Ren J, Liu T, Wang X.
    Water Res; 2016 Nov 15; 105():129-137. PubMed ID: 27611640
    [Abstract] [Full Text] [Related]

  • 36. Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions.
    Praetorius A, Labille J, Scheringer M, Thill A, Hungerbühler K, Bottero JY.
    Environ Sci Technol; 2014 Sep 16; 48(18):10690-8. PubMed ID: 25127331
    [Abstract] [Full Text] [Related]

  • 37. Effects of myo-inositol hexakisphosphate, ferrihydrite coating, ionic strength and pH on the transport of TiO2 nanoparticles in quartz sand.
    Tang Y, Wang X, Yan Y, Zeng H, Wang G, Tan W, Liu F, Feng X.
    Environ Pollut; 2019 Sep 16; 252(Pt B):1193-1201. PubMed ID: 31252117
    [Abstract] [Full Text] [Related]

  • 38. Surface speciation of myo-inositol hexakisphosphate adsorbed on TiO2 nanoparticles and its impact on their colloidal stability in aqueous suspension: A comparative study with orthophosphate.
    Wan B, Yan Y, Liu F, Tan W, He J, Feng X.
    Sci Total Environ; 2016 Feb 15; 544():134-42. PubMed ID: 26657256
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles: application to the modeling of their aggregation kinetics.
    Bouhaik IS, Leroy P, Ollivier P, Azaroual M, Mercury L.
    J Colloid Interface Sci; 2013 Sep 15; 406():75-85. PubMed ID: 23806415
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 24.