These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Validation of photoplethysmography- and acceleration-based sleep staging in a community sample: comparison with polysomnography and Actiwatch. Liu PK, Ting N, Chiu HC, Lin YC, Liu YT, Ku BW, Lee PL. J Clin Sleep Med; 2023 Oct 01; 19(10):1797-1810. PubMed ID: 37338335 [Abstract] [Full Text] [Related]
3. Estimation of sleep stages in a healthy adult population from optical plethysmography and accelerometer signals. Beattie Z, Oyang Y, Statan A, Ghoreyshi A, Pantelopoulos A, Russell A, Heneghan C. Physiol Meas; 2017 Oct 31; 38(11):1968-1979. PubMed ID: 29087960 [Abstract] [Full Text] [Related]
5. Performance comparison between wrist and chest actigraphy in combination with heart rate variability for sleep classification. Aktaruzzaman M, Rivolta MW, Karmacharya R, Scarabottolo N, Pugnetti L, Garegnani M, Bovi G, Scalera G, Ferrarin M, Sassi R. Comput Biol Med; 2017 Oct 01; 89():212-221. PubMed ID: 28841459 [Abstract] [Full Text] [Related]
8. Validation of the Sleep-Wake Scoring of a New Wrist-Worn Sleep Monitoring Device. Pigeon WR, Taylor M, Bui A, Oleynk C, Walsh P, Bishop TM. J Clin Sleep Med; 2018 Jun 15; 14(6):1057-1062. PubMed ID: 29852899 [Abstract] [Full Text] [Related]
9. Deep learning enables sleep staging from photoplethysmogram for patients with suspected sleep apnea. Korkalainen H, Aakko J, Duce B, Kainulainen S, Leino A, Nikkonen S, Afara IO, Myllymaa S, Töyräs J, Leppänen T. Sleep; 2020 Nov 12; 43(11):. PubMed ID: 32436942 [Abstract] [Full Text] [Related]
10. Automatic sleep staging using heart rate variability, body movements, and recurrent neural networks in a sleep disordered population. Fonseca P, van Gilst MM, Radha M, Ross M, Moreau A, Cerny A, Anderer P, Long X, van Dijk JP, Overeem S. Sleep; 2020 Sep 14; 43(9):. PubMed ID: 32249911 [Abstract] [Full Text] [Related]
16. An integrated video-analysis software system designed for movement detection and sleep analysis. Validation of a tool for the behavioural study of sleep. Scatena M, Dittoni S, Maviglia R, Frusciante R, Testani E, Vollono C, Losurdo A, Colicchio S, Gnoni V, Labriola C, Farina B, Pennisi MA, Della Marca G. Clin Neurophysiol; 2012 Feb 14; 123(2):318-23. PubMed ID: 21873109 [Abstract] [Full Text] [Related]
17. A validation study of the WHOOP strap against polysomnography to assess sleep. Miller DJ, Lastella M, Scanlan AT, Bellenger C, Halson SL, Roach GD, Sargent C. J Sports Sci; 2020 Nov 14; 38(22):2631-2636. PubMed ID: 32713257 [Abstract] [Full Text] [Related]
19. Detecting sleep using heart rate and motion data from multisensor consumer-grade wearables, relative to wrist actigraphy and polysomnography. Roberts DM, Schade MM, Mathew GM, Gartenberg D, Buxton OM. Sleep; 2020 Jul 13; 43(7):. PubMed ID: 32215550 [Abstract] [Full Text] [Related]
20. Overnight Sleep Staging Using Chest-Worn Accelerometry. Schipper F, Grassi A, Ross M, Cerny A, Anderer P, Hermans L, van Meulen F, Leentjens M, Schoustra E, Bosschieter P, van Sloun RJG, Overeem S, Fonseca P. Sensors (Basel); 2024 Sep 02; 24(17):. PubMed ID: 39275628 [Abstract] [Full Text] [Related] Page: [Next] [New Search]