These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
141 related items for PubMed ID: 2884569
21. [Morphological picture of lesions to substantia nigra of rats following intracardial administration of quinolinic acid]. Markiewicz D, Beskid M. Pol Tyg Lek; 1989 Apr 10; 44(10-11):262-4. PubMed ID: 2530499 [Abstract] [Full Text] [Related]
22. Systemic or local administration of azide produces striatal lesions by an energy impairment-induced excitotoxic mechanism. Brouillet E, Hyman BT, Jenkins BG, Henshaw DR, Schulz JB, Sodhi P, Rosen BR, Beal MF. Exp Neurol; 1994 Oct 10; 129(2):175-82. PubMed ID: 7525331 [Abstract] [Full Text] [Related]
23. NADPH-diaphorase: a selective histochemical marker for striatal neurons containing both somatostatin- and avian pancreatic polypeptide (APP)-like immunoreactivities. Vincent SR, Johansson O, Hökfelt T, Skirboll L, Elde RP, Terenius L, Kimmel J, Goldstein M. J Comp Neurol; 1983 Jul 01; 217(3):252-63. PubMed ID: 6136531 [Abstract] [Full Text] [Related]
24. Striatal modulation of cAMP-response-element-binding protein (CREB) after excitotoxic lesions: implications with neuronal vulnerability in Huntington's disease. Giampà C, DeMarch Z, D'Angelo V, Morello M, Martorana A, Sancesario G, Bernardi G, Fusco FR. Eur J Neurosci; 2006 Jan 01; 23(1):11-20. PubMed ID: 16420411 [Abstract] [Full Text] [Related]
25. Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III). Pérez-De La Cruz V, González-Cortés C, Galván-Arzate S, Medina-Campos ON, Pérez-Severiano F, Ali SF, Pedraza-Chaverrí J, Santamaría A. Neuroscience; 2005 Jan 01; 135(2):463-74. PubMed ID: 16111817 [Abstract] [Full Text] [Related]
26. The effect of nitric oxide synthase inhibition on quinolinic acid toxicity in the rat striatum. MacKenzie GM, Jenner P, Marsden CD. Neuroscience; 1995 Jul 01; 67(2):357-71. PubMed ID: 7545792 [Abstract] [Full Text] [Related]
27. Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington's disease. Ferrante RJ, Kowall NW, Beal MF, Martin JB, Bird ED, Richardson EP. J Neuropathol Exp Neurol; 1987 Jan 01; 46(1):12-27. PubMed ID: 2947977 [Abstract] [Full Text] [Related]
28. Ketamine anaesthesia interferes with the quinolinic acid-induced lesion in a rat model of Huntington's disease. Jiang W, Büchele F, Papazoglou A, Döbrössy M, Nikkhah G. J Neurosci Methods; 2009 May 15; 179(2):219-23. PubMed ID: 19428530 [Abstract] [Full Text] [Related]
29. Idebenone attenuates neuronal degeneration induced by intrastriatal injection of excitotoxins. Miyamoto M, Coyle JT. Exp Neurol; 1990 Apr 15; 108(1):38-45. PubMed ID: 2138566 [Abstract] [Full Text] [Related]
30. Endogenous kynurenate controls the vulnerability of striatal neurons to quinolinate: Implications for Huntington's disease. Sapko MT, Guidetti P, Yu P, Tagle DA, Pellicciari R, Schwarcz R. Exp Neurol; 2006 Jan 15; 197(1):31-40. PubMed ID: 16099455 [Abstract] [Full Text] [Related]
31. Chronic infusion of quinolinic acid in rat striatum: effects on discrete neuronal populations. Forloni GL, Angeretti N, Rizzi M, Vezzani A. J Neurol Sci; 1992 Apr 15; 108(2):129-36. PubMed ID: 1387677 [Abstract] [Full Text] [Related]
32. Organotypic slice cultures of the rat striatum: an immunocytochemical, histochemical and in situ hybridization study of somatostatin, neuropeptide Y, nicotinamide adenine dinucleotide phosphate-diaphorase, and enkephalin. Ostergaard K, Finsen B, Zimmer J. Exp Brain Res; 1995 Apr 15; 103(1):70-84. PubMed ID: 7615039 [Abstract] [Full Text] [Related]
33. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease. Tattersfield AS, Croon RJ, Liu YW, Kells AP, Faull RL, Connor B. Neuroscience; 2004 Apr 15; 127(2):319-32. PubMed ID: 15262322 [Abstract] [Full Text] [Related]
34. Somatostatin in medium-sized aspiny interneurons of striatum is responsible for their preservation in quinolinic acid and N-methyl-D-asparate-induced neurotoxicity. Kumar U. J Mol Neurosci; 2008 Jul 15; 35(3):345-54. PubMed ID: 18483877 [Abstract] [Full Text] [Related]
35. Role of glutamate receptor subtypes in the differential release of somatostatin, neuropeptide Y, and substance P in primary serum-free cultures of striatal neurons. Garside S, Mazurek MF. Synapse; 1997 Nov 15; 27(3):161-7. PubMed ID: 9329151 [Abstract] [Full Text] [Related]
38. Dissociation between the excitatory and "excitotoxic" effects of quinolinic acid analogs on the striatal cholinergic interneuron. Lehmann J, Ferkany JW, Schaeffer P, Coyle JT. J Pharmacol Exp Ther; 1985 Mar 15; 232(3):873-82. PubMed ID: 2983071 [Abstract] [Full Text] [Related]
39. Differential susceptibility to striatal neurodegeneration induced by quinolinic acid and kainate in inbred, outbred and hybrid mouse strains. McLin JP, Thompson LM, Steward O. Eur J Neurosci; 2006 Dec 15; 24(11):3134-40. PubMed ID: 17156374 [Abstract] [Full Text] [Related]
40. Maintenance of susceptibility to neurodegeneration following intrastriatal injections of quinolinic acid in a new transgenic mouse model of Huntington's disease. Petersén A, Chase K, Puschban Z, DiFiglia M, Brundin P, Aronin N. Exp Neurol; 2002 May 15; 175(1):297-300. PubMed ID: 12009780 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]