These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
157 related items for PubMed ID: 28846405
1. Mechanisms for Increasing the pH Buffering Capacity of an Acidic Ultisol by Crop Residue-Derived Biochars. Shi RY, Hong ZN, Li JY, Jiang J, Baquy MA, Xu RK, Qian W. J Agric Food Chem; 2017 Sep 20; 65(37):8111-8119. PubMed ID: 28846405 [Abstract] [Full Text] [Related]
2. Effects of the increases in soil pH and pH buffering capacity induced by crop residue biochars on available Cd contents in acidic paddy soils. Lu HL, Li KW, Nkoh JN, Shi YX, He X, Hong ZN, Xu RK. Chemosphere; 2022 Aug 20; 301():134674. PubMed ID: 35461893 [Abstract] [Full Text] [Related]
3. Beneficial dual role of biochars in inhibiting soil acidification resulting from nitrification. Shi RY, Ni N, Nkoh JN, Li JY, Xu RK, Qian W. Chemosphere; 2019 Nov 20; 234():43-51. PubMed ID: 31203040 [Abstract] [Full Text] [Related]
4. Incorporation of corn straw biochar inhibited the re-acidification of four acidic soils derived from different parent materials. Shi RY, Li JY, Jiang J, Kamran MA, Xu RK, Qian W. Environ Sci Pollut Res Int; 2018 Apr 20; 25(10):9662-9672. PubMed ID: 29363035 [Abstract] [Full Text] [Related]
5. Peanut straw biochar increases the resistance of two Ultisols derived from different parent materials to acidification: A mechanism study. Shi RY, Hong ZN, Li JY, Jiang J, Kamran MA, Xu RK, Qian W. J Environ Manage; 2018 Mar 15; 210():171-179. PubMed ID: 29348057 [Abstract] [Full Text] [Related]
6. Amelioration of an acidic ultisol by straw-derived biochars combined with dicyandiamide under application of urea. Mehmood K, Li JY, Jiang J, Shi RY, Liu ZD, Xu RK. Environ Sci Pollut Res Int; 2017 Mar 15; 24(7):6698-6709. PubMed ID: 28084598 [Abstract] [Full Text] [Related]
7. Pyrolysis temperature influences ameliorating effects of biochars on acidic soil. Wan Q, Yuan JH, Xu RK, Li XH. Environ Sci Pollut Res Int; 2014 Feb 15; 21(4):2486-95. PubMed ID: 24078274 [Abstract] [Full Text] [Related]
8. Biochars derived from crop straws increased the availability of applied phosphorus fertilizer for maize in Ultisol and Oxisol. Baquy MA, Jiang J, Xu R. Environ Sci Pollut Res Int; 2020 Feb 15; 27(5):5511-5522. PubMed ID: 31848971 [Abstract] [Full Text] [Related]
9. Does biochar affect the availability and chemical fractionation of phosphate in soils? Hong C, Lu S. Environ Sci Pollut Res Int; 2018 Mar 15; 25(9):8725-8734. PubMed ID: 29327187 [Abstract] [Full Text] [Related]
10. Quality improvement of acidic soils by biochar derived from renewable materials. Moon DH, Hwang I, Chang YY, Koutsospyros A, Cheong KH, Ji WH, Park JH. Environ Sci Pollut Res Int; 2017 Feb 15; 24(4):4194-4199. PubMed ID: 27909923 [Abstract] [Full Text] [Related]
11. Solubility of lead and copper in biochar-amended small arms range soils: influence of soil organic carbon and pH. Uchimiya M, Bannon DI. J Agric Food Chem; 2013 Aug 14; 61(32):7679-88. PubMed ID: 23869882 [Abstract] [Full Text] [Related]
12. Contribution of modified P-enriched biochar on pH buffering capacity of acidic soil. Arwenyo B, Varco JJ, Dygert A, Brown S, Pittman CU, Mlsna T. J Environ Manage; 2023 Aug 01; 339():117863. PubMed ID: 37080104 [Abstract] [Full Text] [Related]
13. Bioavailability and Speciation of Heavy Metals in Polluted Soil as Alleviated by Different Types of Biochars. Xu W, Hou S, Li Y, Khan MA, Luo W, Chen Z, Li Y, Wu X, Ye Z, Liu D. Bull Environ Contam Toxicol; 2020 Apr 01; 104(4):484-488. PubMed ID: 32100059 [Abstract] [Full Text] [Related]
14. Effects of biochar amendment on the soil silicon cycle in a soil-rice ecosystem. Wang Y, Xiao X, Zhang K, Chen B. Environ Pollut; 2019 May 01; 248():823-833. PubMed ID: 30856498 [Abstract] [Full Text] [Related]
15. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products. Jeong CY, Dodla SK, Wang JJ. Chemosphere; 2016 Jan 01; 142():4-13. PubMed ID: 26058554 [Abstract] [Full Text] [Related]
16. Application of chitosan- and alginate-modified biochars in promoting the resistance to paddy soil acidification and immobilization of soil cadmium. He X, Nkoh JN, Shi RY, Xu RK. Environ Pollut; 2022 Nov 15; 313():120175. PubMed ID: 36115484 [Abstract] [Full Text] [Related]
17. Effects of crop straw biochars on aluminum species in soil solution as related with the growth and yield of canola (Brassica napus L.) in an acidic Ultisol under field condition. Zhao WR, Li JY, Deng KY, Shi RY, Jiang J, Hong ZN, Qian W, He X, Xu RK. Environ Sci Pollut Res Int; 2020 Aug 15; 27(24):30178-30189. PubMed ID: 32451890 [Abstract] [Full Text] [Related]
18. Analyzing the impacts of three types of biochar on soil carbon fractions and physiochemical properties in a corn-soybean rotation. Sandhu SS, Ussiri DAN, Kumar S, Chintala R, Papiernik SK, Malo DD, Schumacher TE. Chemosphere; 2017 Oct 15; 184():473-481. PubMed ID: 28618279 [Abstract] [Full Text] [Related]
19. The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils. Manolikaki II, Mangolis A, Diamadopoulos E. J Environ Manage; 2016 Oct 01; 181():536-543. PubMed ID: 27429359 [Abstract] [Full Text] [Related]
20. Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process. Qian L, Chen B. J Agric Food Chem; 2014 Jan 15; 62(2):373-80. PubMed ID: 24364719 [Abstract] [Full Text] [Related] Page: [Next] [New Search]