These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


209 related items for PubMed ID: 28857516

  • 1. Modeling of the hERG K+ Channel Blockage Using Online Chemical Database and Modeling Environment (OCHEM).
    Li X, Zhang Y, Li H, Zhao Y.
    Mol Inform; 2017 Dec; 36(12):. PubMed ID: 28857516
    [Abstract] [Full Text] [Related]

  • 2. HergSPred: Accurate Classification of hERG Blockers/Nonblockers with Machine-Learning Models.
    Zhang X, Mao J, Wei M, Qi Y, Zhang JZH.
    J Chem Inf Model; 2022 Apr 25; 62(8):1830-1839. PubMed ID: 35404051
    [Abstract] [Full Text] [Related]

  • 3. Combined receptor and ligand-based approach to the universal pharmacophore model development for studies of drug blockade to the hERG1 pore domain.
    Durdagi S, Duff HJ, Noskov SY.
    J Chem Inf Model; 2011 Feb 28; 51(2):463-74. PubMed ID: 21241063
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. In silico binary classification QSAR models based on 4D-fingerprints and MOE descriptors for prediction of hERG blockage.
    Su BH, Shen MY, Esposito EX, Hopfinger AJ, Tseng YJ.
    J Chem Inf Model; 2010 Jul 26; 50(7):1304-18. PubMed ID: 20565102
    [Abstract] [Full Text] [Related]

  • 9. Indexing molecules for their hERG liability.
    Rayan A, Falah M, Raiyn J, Da'adoosh B, Kadan S, Zaid H, Goldblum A.
    Eur J Med Chem; 2013 Jul 26; 65():304-14. PubMed ID: 23727540
    [Abstract] [Full Text] [Related]

  • 10. In silico predictions of hERG channel blockers in drug discovery: from ligand-based and target-based approaches to systems chemical biology.
    Taboureau O, Jørgensen FS.
    Comb Chem High Throughput Screen; 2011 Jun 01; 14(5):375-87. PubMed ID: 21470179
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Prospective validation of a comprehensive in silico hERG model and its applications to commercial compound and drug databases.
    Doddareddy MR, Klaasse EC, Shagufta, Ijzerman AP, Bender A.
    ChemMedChem; 2010 May 03; 5(5):716-29. PubMed ID: 20349498
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Computational investigations of hERG channel blockers: New insights and current predictive models.
    Villoutreix BO, Taboureau O.
    Adv Drug Deliv Rev; 2015 Jun 23; 86():72-82. PubMed ID: 25770776
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. A binary QSAR model for classification of hERG potassium channel blockers.
    Thai KM, Ecker GF.
    Bioorg Med Chem; 2008 Apr 01; 16(7):4107-19. PubMed ID: 18243713
    [Abstract] [Full Text] [Related]

  • 18. Prediction of hERG potassium channel blockage using ensemble learning methods and molecular fingerprints.
    Liu M, Zhang L, Li S, Yang T, Liu L, Zhao J, Liu H.
    Toxicol Lett; 2020 Oct 10; 332():88-96. PubMed ID: 32629073
    [Abstract] [Full Text] [Related]

  • 19. Recent developments in computational prediction of HERG blockage.
    Wang S, Li Y, Xu L, Li D, Hou T.
    Curr Top Med Chem; 2013 Oct 10; 13(11):1317-26. PubMed ID: 23675938
    [Abstract] [Full Text] [Related]

  • 20. Machine learning and deep learning approaches for enhanced prediction of hERG blockade: a comprehensive QSAR modeling study.
    Liu J, Khan MKH, Guo W, Dong F, Ge W, Zhang C, Gong P, Patterson TA, Hong H.
    Expert Opin Drug Metab Toxicol; 2024 Jul 10; 20(7):665-684. PubMed ID: 38968091
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.