These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


178 related items for PubMed ID: 2886149

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. pH-dependent fusion of phosphatidylcholine small vesicles. Induction by a synthetic amphipathic peptide.
    Parente RA, Nir S, Szoka FC.
    J Biol Chem; 1988 Apr 05; 263(10):4724-30. PubMed ID: 2450874
    [Abstract] [Full Text] [Related]

  • 4. Association of a pH-sensitive peptide with membrane vesicles: role of amino acid sequence.
    Parente RA, Nadasdi L, Subbarao NK, Szoka FC.
    Biochemistry; 1990 Sep 18; 29(37):8713-9. PubMed ID: 2271551
    [Abstract] [Full Text] [Related]

  • 5. Effect of cholesterol and charge on pore formation in bilayer vesicles by a pH-sensitive peptide.
    Nicol F, Nir S, Szoka FC.
    Biophys J; 1996 Dec 18; 71(6):3288-301. PubMed ID: 8968598
    [Abstract] [Full Text] [Related]

  • 6. Secondary structure and orientation of the amphipathic peptide GALA in lipid structures. An infrared-spectroscopic approach.
    Goormaghtigh E, De Meutter J, Szoka F, Cabiaux V, Parente RA, Ruysschaert JM.
    Eur J Biochem; 1991 Jan 30; 195(2):421-9. PubMed ID: 1997324
    [Abstract] [Full Text] [Related]

  • 7. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans.
    Killian JA, Salemink I, de Planque MR, Lindblom G, Koeppe RE, Greathouse DV.
    Biochemistry; 1996 Jan 23; 35(3):1037-45. PubMed ID: 8547239
    [Abstract] [Full Text] [Related]

  • 8. Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA.
    Parente RA, Nir S, Szoka FC.
    Biochemistry; 1990 Sep 18; 29(37):8720-8. PubMed ID: 2271552
    [Abstract] [Full Text] [Related]

  • 9. Lecithin:cholesterol acyltransferase activation by synthetic amphipathic peptides.
    Subbarao NK, Fielding CJ, Hamilton RL, Szoka FC.
    Proteins; 1988 Sep 18; 3(3):187-98. PubMed ID: 3255105
    [Abstract] [Full Text] [Related]

  • 10. pH-dependent membrane fusion and vesiculation of phospholipid large unilamellar vesicles induced by amphiphilic anionic and cationic peptides.
    Murata M, Takahashi S, Kagiwada S, Suzuki A, Ohnishi S.
    Biochemistry; 1992 Feb 25; 31(7):1986-92. PubMed ID: 1536841
    [Abstract] [Full Text] [Related]

  • 11. Membrane binding of pH-sensitive influenza fusion peptides. positioning, configuration, and induced leakage in a lipid vesicle model.
    Esbjörner EK, Oglecka K, Lincoln P, Gräslund A, Nordén B.
    Biochemistry; 2007 Nov 27; 46(47):13490-504. PubMed ID: 17973492
    [Abstract] [Full Text] [Related]

  • 12. Contribution of the hydrophobicity gradient of an amphipathic peptide to its mode of association with lipids.
    Pérez-Méndez O, Vanloo B, Decout A, Goethals M, Peelman F, Vandekerckhove J, Brasseur R, Rosseneu M.
    Eur J Biochem; 1998 Sep 15; 256(3):570-9. PubMed ID: 9780233
    [Abstract] [Full Text] [Related]

  • 13. Roles of peptide-peptide charge interaction and lipid phase separation in helix-helix association in lipid bilayer.
    Shigematsu D, Matsutani M, Furuya T, Kiyota T, Lee S, Sugihara G, Yamashita S.
    Biochim Biophys Acta; 2002 Aug 19; 1564(1):271-80. PubMed ID: 12101022
    [Abstract] [Full Text] [Related]

  • 14. Stabilization of helical structure in two 17-residue amphipathic analogues of the C-terminal peptide of cytochrome C.
    Collawn JF, Paterson Y.
    Biopolymers; 2002 Aug 19; 29(8-9):1289-96. PubMed ID: 2164428
    [Abstract] [Full Text] [Related]

  • 15. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes.
    Arouri A, Dathe M, Blume A.
    Biophys Chem; 2013 Aug 19; 180-181():10-21. PubMed ID: 23792704
    [Abstract] [Full Text] [Related]

  • 16. Design, synthesis and structure of an amphipathic peptide with pH-inducible haemolytic activity.
    Moser R.
    Protein Eng; 1992 Jun 19; 5(4):323-31. PubMed ID: 1409554
    [Abstract] [Full Text] [Related]

  • 17. Design and characterization of an intramolecular antiparallel coiled coil peptide.
    Myszka DG, Chaiken IM.
    Biochemistry; 1994 Mar 08; 33(9):2363-72. PubMed ID: 8117695
    [Abstract] [Full Text] [Related]

  • 18. Design of a pH-sensitive pore-forming peptide with improved performance.
    Haas DH, Murphy RM.
    J Pept Res; 2004 Jan 08; 63(1):9-16. PubMed ID: 14984568
    [Abstract] [Full Text] [Related]

  • 19. The spectroscopic analysis for binding of amphipathic and antimicrobial model peptides containing pyrenylalanine and tryptophan to lipid bilayer.
    Lee S, Yoshida M, Mihara H, Aoyagi H, Kato T, Yamasaki N.
    Biochim Biophys Acta; 1989 Sep 04; 984(2):174-82. PubMed ID: 2765546
    [Abstract] [Full Text] [Related]

  • 20. Homooligopeptides composed of hydrophobic amino acid residues interact in a specific manner by taking alpha-helix or beta-structure toward lipid bilayers.
    Lee S, Yoshitomi H, Morikawa M, Ando S, Takiguchi H, Inoue T, Sugihara G.
    Biopolymers; 1995 Sep 04; 36(3):391-8. PubMed ID: 7669922
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.