These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


580 related items for PubMed ID: 28862833

  • 1. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers.
    Ding C, Zhang Y, Liu F, Nakazawa N, Huang Q, Hayase S, Ogomi Y, Toyoda T, Wang R, Shen Q.
    ACS Appl Mater Interfaces; 2018 Aug 08; 10(31):26142-26152. PubMed ID: 28862833
    [Abstract] [Full Text] [Related]

  • 2. Understanding charge transfer and recombination by interface engineering for improving the efficiency of PbS quantum dot solar cells.
    Ding C, Zhang Y, Liu F, Kitabatake Y, Hayase S, Toyoda T, Wang R, Yoshino K, Minemoto T, Shen Q.
    Nanoscale Horiz; 2018 Jul 01; 3(4):417-429. PubMed ID: 32254129
    [Abstract] [Full Text] [Related]

  • 3. Reducing Interface Recombination through Mixed Nanocrystal Interlayers in PbS Quantum Dot Solar Cells.
    Pradhan S, Stavrinadis A, Gupta S, Konstantatos G.
    ACS Appl Mater Interfaces; 2017 Aug 23; 9(33):27390-27395. PubMed ID: 28787128
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells.
    Sun Z, Sitbon G, Pons T, Bakulin AA, Chen Z.
    Sci Rep; 2015 May 29; 5():10626. PubMed ID: 26024021
    [Abstract] [Full Text] [Related]

  • 9. Towards high efficiency air-processed near-infrared responsive photovoltaics: bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays.
    Gonfa BA, Kim MR, Delegan N, Tavares AC, Izquierdo R, Wu N, El Khakani MA, Ma D.
    Nanoscale; 2015 Jun 14; 7(22):10039-49. PubMed ID: 25975363
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation.
    Chang J, Kuga Y, Mora-Seró I, Toyoda T, Ogomi Y, Hayase S, Bisquert J, Shen Q.
    Nanoscale; 2015 Mar 12; 7(12):5446-56. PubMed ID: 25732872
    [Abstract] [Full Text] [Related]

  • 13. Efficiency Enhancement of Solid-State CuInS2 Quantum Dot-Sensitized Solar Cells by Improving the Charge Recombination.
    Fu B, Deng C, Yang L.
    Nanoscale Res Lett; 2019 Jun 06; 14(1):198. PubMed ID: 31172299
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control.
    Choi H, Song JH, Jang J, Mai XD, Kim S, Jeong S.
    Nanoscale; 2015 Nov 07; 7(41):17473-81. PubMed ID: 26440646
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Light energy conversion by mesoscopic PbS quantum dots/TiO2 heterojunction solar cells.
    Etgar L, Moehl T, Gabriel S, Hickey SG, Eychmüller A, Grätzel M.
    ACS Nano; 2012 Apr 24; 6(4):3092-9. PubMed ID: 22409478
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Increased Quantum Dot Loading by pH Control Reduces Interfacial Recombination in Quantum-Dot-Sensitized Solar Cells.
    Roelofs KE, Herron SM, Bent SF.
    ACS Nano; 2015 Aug 25; 9(8):8321-34. PubMed ID: 26244426
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 29.