These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
460 related items for PubMed ID: 28864195
1. Flow injection amperometric sandwich-type aptasensor for the determination of human leukemic lymphoblast cancer cells using MWCNTs-Pdnano/PTCA/aptamer as labeled aptamer for the signal amplification. Amouzadeh Tabrizi M, Shamsipur M, Saber R, Sarkar S. Anal Chim Acta; 2017 Sep 08; 985():61-68. PubMed ID: 28864195 [Abstract] [Full Text] [Related]
2. Isolation of HL-60 cancer cells from the human serum sample using MnO2-PEI/Ni/Au/aptamer as a novel nanomotor and electrochemical determination of thereof by aptamer/gold nanoparticles-poly(3,4-ethylene dioxythiophene) modified GC electrode. Amouzadeh Tabrizi M, Shamsipur M, Saber R, Sarkar S. Biosens Bioelectron; 2018 Jul 01; 110():141-146. PubMed ID: 29609160 [Abstract] [Full Text] [Related]
3. Dual-aptamer based electrochemical sandwich biosensor for MCF-7 human breast cancer cells using silver nanoparticle labels and a poly(glutamic acid)/MWNT nanocomposite. Yazdanparast S, Benvidi A, Banaei M, Nikukar H, Tezerjani MD, Azimzadeh M. Mikrochim Acta; 2018 Aug 09; 185(9):405. PubMed ID: 30094655 [Abstract] [Full Text] [Related]
4. An ultrasensitive and selective electrochemical aptasensor based on rGO-MWCNTs/Chitosan/carbon quantum dot for the detection of lysozyme. Rezaei B, Jamei HR, Ensafi AA. Biosens Bioelectron; 2018 Sep 15; 115():37-44. PubMed ID: 29793133 [Abstract] [Full Text] [Related]
5. An electrochemical aptasensor based on TiO2/MWCNT and a novel synthesized Schiff base nanocomposite for the ultrasensitive detection of thrombin. Heydari-Bafrooei E, Amini M, Ardakani MH. Biosens Bioelectron; 2016 Nov 15; 85():828-836. PubMed ID: 27295570 [Abstract] [Full Text] [Related]
6. Earlier diagnoses of acute leukemia by a sandwich type of electrochemical aptasensor based on copper sulfide-graphene composite. Khoshroo A, Hosseinzadeh L, Adib K, Rahimi-Nasrabadi M, Ahmadi F. Anal Chim Acta; 2021 Feb 15; 1146():1-10. PubMed ID: 33461703 [Abstract] [Full Text] [Related]
8. High loading Pt nanoparticles on functionalization of carbon nanotubes for fabricating nonenzyme hydrogen peroxide sensor. Li X, Liu X, Wang W, Li L, Lu X. Biosens Bioelectron; 2014 Sep 15; 59():221-6. PubMed ID: 24727609 [Abstract] [Full Text] [Related]
11. Voltammetric aptasensor for bisphenol A based on the use of a MWCNT/Fe3O4@gold nanocomposite. Baghayeri M, Ansari R, Nodehi M, Razavipanah I, Veisi H. Mikrochim Acta; 2018 Jun 07; 185(7):320. PubMed ID: 29881880 [Abstract] [Full Text] [Related]
12. Electrochemical aptasensor for the detection of adenosine by using PdCu@MWCNTs-supported bienzymes as labels. Wu D, Ren X, Hu L, Fan D, Zheng Y, Wei Q. Biosens Bioelectron; 2015 Dec 15; 74():391-7. PubMed ID: 26164010 [Abstract] [Full Text] [Related]
13. Ultrasensitive electrochemical aptasensor for the detection of thrombin based on dual signal amplification strategy of Au@GS and DNA-CoPd NPs conjugates. Wang Y, Zhang Y, Yan T, Fan D, Du B, Ma H, Wei Q. Biosens Bioelectron; 2016 Jun 15; 80():640-646. PubMed ID: 26908183 [Abstract] [Full Text] [Related]
14. Highly selective and sensitive adenosine aptasensor based on platinum nanoparticles as catalytical label for amplified detection of biorecognition events through H2O2 reduction. Shahdost-fard F, Salimi A, Khezrian S. Biosens Bioelectron; 2014 Mar 15; 53():355-62. PubMed ID: 24176972 [Abstract] [Full Text] [Related]
15. Electrochemical aptasensor for mucin 1 based on dual signal amplification of poly(o-phenylenediamine) carrier and functionalized carbon nanotubes tracing tag. Chen X, Zhang Q, Qian C, Hao N, Xu L, Yao C. Biosens Bioelectron; 2015 Feb 15; 64():485-92. PubMed ID: 25290645 [Abstract] [Full Text] [Related]
16. Ultrasensitive and reusable electrochemical aptasensor for detection of tryptophan using of [Fe(bpy)3](p-CH3C6H4SO2)2 as an electroactive indicator. Bagheri Hashkavayi A, Raoof JB. J Pharm Biomed Anal; 2019 Jan 30; 163():180-187. PubMed ID: 30316063 [Abstract] [Full Text] [Related]
17. Lysozyme aptasensor based on a glassy carbon electrode modified with a nanocomposite consisting of multi-walled carbon nanotubes, poly(diallyl dimethyl ammonium chloride) and carbon quantum dots. Rezaei B, Jamei HR, Ensafi AA. Mikrochim Acta; 2018 Feb 14; 185(3):180. PubMed ID: 29594452 [Abstract] [Full Text] [Related]
18. Ultrasensitive electrochemical aptasensor based on sandwich architecture for selective label-free detection of colorectal cancer (CT26) cells. Hashkavayi AB, Raoof JB, Ojani R, Kavoosian S. Biosens Bioelectron; 2017 Jun 15; 92():630-637. PubMed ID: 27829554 [Abstract] [Full Text] [Related]
19. Aptasensor based on the synergistic contributions of chitosan-gold nanoparticles, graphene-gold nanoparticles and multi-walled carbon nanotubes-cobalt phthalocyanine nanocomposites for kanamycin detection. Sun X, Li F, Shen G, Huang J, Wang X. Analyst; 2014 Jan 07; 139(1):299-308. PubMed ID: 24256770 [Abstract] [Full Text] [Related]
20. Cyclic voltammetry deposition of copper nanostructure on MWCNTs modified pencil graphite electrode: An ultra-sensitive hydrazine sensor. Heydari H, Gholivand MB, Abdolmaleki A. Mater Sci Eng C Mater Biol Appl; 2016 Sep 01; 66():16-24. PubMed ID: 27207034 [Abstract] [Full Text] [Related] Page: [Next] [New Search]