These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


381 related items for PubMed ID: 28865071

  • 1. Promising cellulolytic fungi isolates for rice straw degradation.
    Pedraza-Zapata DC, Sánchez-Garibello AM, Quevedo-Hidalgo B, Moreno-Sarmiento N, Gutiérrez-Rojas I.
    J Microbiol; 2017 Sep; 55(9):711-719. PubMed ID: 28865071
    [Abstract] [Full Text] [Related]

  • 2. Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw.
    Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T.
    J Biosci Bioeng; 2005 Dec; 100(6):637-43. PubMed ID: 16473773
    [Abstract] [Full Text] [Related]

  • 3. Rice straw-decomposing fungi and their cellulolytic and xylanolytic enzymes.
    Lee S, Jang Y, Lee YM, Lee J, Lee H, Kim GH, Kim JJ.
    J Microbiol Biotechnol; 2011 Dec; 21(12):1322-9. PubMed ID: 22210620
    [Abstract] [Full Text] [Related]

  • 4. [Isolation and identification of a cellulose degrading fungus Y5 and its capability of degradating wheat straw].
    Yin ZW, Fan BQ, Ren P.
    Huan Jing Ke Xue; 2011 Jan; 32(1):247-52. PubMed ID: 21404694
    [Abstract] [Full Text] [Related]

  • 5. Simultaneous production of cellulase and ferulic acid esterase by Penicillium decumbens with rice straw as the sole carbon source.
    Hou R, Hu J, Wang Y, Wei H, Gao MT.
    J Biosci Bioeng; 2020 Mar; 129(3):276-283. PubMed ID: 31630943
    [Abstract] [Full Text] [Related]

  • 6. [Screening of three straw-cellulose degrading microorganism].
    Wang H, Fan B.
    Wei Sheng Wu Xue Bao; 2010 Jul; 50(7):870-5. PubMed ID: 20815232
    [Abstract] [Full Text] [Related]

  • 7. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes.
    Teeravivattanakit T, Baramee S, Phitsuwan P, Sornyotha S, Waeonukul R, Pason P, Tachaapaikoon C, Poomputsa K, Kosugi A, Sakka K, Ratanakhanokchai K.
    Appl Environ Microbiol; 2017 Nov 15; 83(22):. PubMed ID: 28864653
    [Abstract] [Full Text] [Related]

  • 8. Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium.
    Baldrian P, Gabriel J.
    FEMS Microbiol Lett; 2003 Mar 28; 220(2):235-40. PubMed ID: 12670686
    [Abstract] [Full Text] [Related]

  • 9. Enhancing soil amendment for salt stress using pretreated rice straw and cellulolytic fungi.
    Ma YN, Mongkolthanaruk W, Riddech N.
    Sci Rep; 2024 Jun 17; 14(1):13903. PubMed ID: 38886460
    [Abstract] [Full Text] [Related]

  • 10. Production of lignocellulose-degrading enzymes and changes in soil bacterial communities during the growth of Pleurotus ostreatus in soil with different carbon content.
    Snajdr J, Baldrian P.
    Folia Microbiol (Praha); 2006 Jun 17; 51(6):579-90. PubMed ID: 17455795
    [Abstract] [Full Text] [Related]

  • 11. Biodegradation of wheat straw by Pleurotus ostreatus.
    Pandey VK, Singh MP.
    Cell Mol Biol (Noisy-le-grand); 2014 Dec 24; 60(5):29-34. PubMed ID: 25535709
    [Abstract] [Full Text] [Related]

  • 12. The effect of Pleurotus spp. fungi on chemical composition and in vitro digestibility of rice straw.
    Jafari MA, Nikkhah A, Sadeghi AA, Chamani M.
    Pak J Biol Sci; 2007 Aug 01; 10(15):2460-4. PubMed ID: 19070114
    [Abstract] [Full Text] [Related]

  • 13. Cellulase activity, degradation of cellulose and lignin and humus formation by cellulolytic fungi.
    Kapoor KK, Jain MK, Mishra MM, Singh CP.
    Ann Microbiol (Paris); 1978 Aug 01; 129 B(4):613-20. PubMed ID: 754574
    [Abstract] [Full Text] [Related]

  • 14. Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes.
    Krogh KB, Mørkeberg A, Jørgensen H, Frisvad JC, Olsson L.
    Appl Biochem Biotechnol; 2004 Aug 01; 113-116():389-401. PubMed ID: 15054266
    [Abstract] [Full Text] [Related]

  • 15. Selection and molecular characterization of cellulolytic-xylanolytic fungi from surface soil-biomass mixtures from Black Belt sites.
    Okeke BC, Hall RW, Nanjundaswamy A, Thomson MS, Deravi Y, Sawyer L, Prescott A.
    Microbiol Res; 2015 Jun 01; 175():24-33. PubMed ID: 25817459
    [Abstract] [Full Text] [Related]

  • 16. Evaluation of secretome of highly efficient lignocellulolytic Penicillium sp. Dal 5 isolated from rhizosphere of conifers.
    Rai R, Kaur B, Singh S, Di Falco M, Tsang A, Chadha BS.
    Bioresour Technol; 2016 Sep 01; 216():958-67. PubMed ID: 27341464
    [Abstract] [Full Text] [Related]

  • 17. Evaluation of cellulolytic and hemicellulolytic abilities of fungi isolated from coffee residue and sawdust composts.
    Eida MF, Nagaoka T, Wasaki J, Kouno K.
    Microbes Environ; 2011 Sep 01; 26(3):220-7. PubMed ID: 21558674
    [Abstract] [Full Text] [Related]

  • 18. Multi-perspective analyses of rice straw modification by Pleurotus ostreatus and effects on biomethane production.
    Huang W, Yuan H, Li X.
    Bioresour Technol; 2020 Jan 01; 296():122365. PubMed ID: 31759858
    [Abstract] [Full Text] [Related]

  • 19. Improving the nutritional value and digestibility of wheat straw, rice straw, and corn cob through solid state fermentation using different Pleurotus species.
    Sufyan A, Ahmad N, Shahzad F, Embaby MG, AbuGhazaleh A, Khan NA.
    J Sci Food Agric; 2022 Apr 01; 102(6):2445-2453. PubMed ID: 34636045
    [Abstract] [Full Text] [Related]

  • 20. Biodegradation of aflatoxin B1 in contaminated rice straw by Pleurotus ostreatus MTCC 142 and Pleurotus ostreatus GHBBF10 in the presence of metal salts and surfactants.
    Das A, Bhattacharya S, Palaniswamy M, Angayarkanni J.
    World J Microbiol Biotechnol; 2014 Aug 01; 30(8):2315-24. PubMed ID: 24770873
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.