These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
421 related items for PubMed ID: 28865124
1. Dry biorefining maximizes the potentials of simultaneous saccharification and co-fermentation for cellulosic ethanol production. Liu G, Zhang Q, Li H, Qureshi AS, Zhang J, Bao X, Bao J. Biotechnol Bioeng; 2018 Jan; 115(1):60-69. PubMed ID: 28865124 [Abstract] [Full Text] [Related]
2. Improved cellulosic ethanol production from corn stover with a low cellulase input using a β-glucosidase-producing yeast following a dry biorefining process. Geberekidan M, Zhang J, Liu ZL, Bao J. Bioprocess Biosyst Eng; 2019 Feb; 42(2):297-304. PubMed ID: 30411143 [Abstract] [Full Text] [Related]
3. Continuous SSCF of AFEX™ pretreated corn stover for enhanced ethanol productivity using commercial enzymes and Saccharomyces cerevisiae 424A (LNH-ST). Jin M, Gunawan C, Balan V, Yu X, Dale BE. Biotechnol Bioeng; 2013 May; 110(5):1302-11. PubMed ID: 23192401 [Abstract] [Full Text] [Related]
7. Steam pretreatment and fermentation of the straw material "Paja Brava" using simultaneous saccharification and co-fermentation. Carrasco C, Baudel H, Peñarrieta M, Solano C, Tejeda L, Roslander C, Galbe M, Lidén G. J Biosci Bioeng; 2011 Feb; 111(2):167-74. PubMed ID: 21081285 [Abstract] [Full Text] [Related]
9. Dual effect of soluble materials in pretreated lignocellulose on simultaneous saccharification and co-fermentation process for the bioethanol production. Qin L, Li X, Liu L, Zhu JQ, Guan QM, Zhang MT, Li WC, Li BZ, Yuan YJ. Bioresour Technol; 2017 Jan; 224():342-348. PubMed ID: 27919544 [Abstract] [Full Text] [Related]
10. In situ detoxification of dry dilute acid pretreated corn stover by co-culture of xylose-utilizing and inhibitor-tolerant Saccharomyces cerevisiae increases ethanol production. Zhu JQ, Li X, Qin L, Li WC, Li HZ, Li BZ, Yuan YJ. Bioresour Technol; 2016 Oct; 218():380-7. PubMed ID: 27387414 [Abstract] [Full Text] [Related]
11. A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates. Ryu S, Karim MN. Appl Microbiol Biotechnol; 2011 Aug; 91(3):529-42. PubMed ID: 21519935 [Abstract] [Full Text] [Related]
13. Re-examination of dilute acid hydrolysis of lignocellulose for production of cellulosic ethanol after de-bottlenecking the inhibitor barrier. Zhang B, Wu L, Wang Y, Li J, Zhan B, Bao J. J Biotechnol; 2022 Jul 20; 353():36-43. PubMed ID: 35597330 [Abstract] [Full Text] [Related]
16. Acceleration of biodetoxification on dilute acid pretreated lignocellulose feedstock by aeration and the consequent ethanol fermentation evaluation. He Y, Zhang J, Bao J. Biotechnol Biofuels; 2016 Jul 20; 9():19. PubMed ID: 26816529 [Abstract] [Full Text] [Related]
18. Enzymatic hydrolysis and simultaneous saccharification and fermentation of alkali/peracetic acid-pretreated sugarcane bagasse for ethanol and 2,3-butanediol production. Zhao X, Song Y, Liu D. Enzyme Microb Technol; 2011 Sep 10; 49(4):413-9. PubMed ID: 22112569 [Abstract] [Full Text] [Related]
19. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. Buaban B, Inoue H, Yano S, Tanapongpipat S, Ruanglek V, Champreda V, Pichyangkura R, Rengpipat S, Eurwilaichitr L. J Biosci Bioeng; 2010 Jul 10; 110(1):18-25. PubMed ID: 20541110 [Abstract] [Full Text] [Related]