These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


163 related items for PubMed ID: 28868217

  • 21. High bioethanol titre from Manihot glaziovii through fed-batch simultaneous saccharification and fermentation in Automatic Gas Potential Test System.
    Moshi AP, Crespo CF, Badshah M, Hosea KM, Mshandete AM, Mattiasson B.
    Bioresour Technol; 2014 Mar; 156():348-56. PubMed ID: 24534761
    [Abstract] [Full Text] [Related]

  • 22. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp for Efficient Bioethanol Production.
    Berłowska J, Pielech-Przybylska K, Balcerek M, Dziekońska-Kubczak U, Patelski P, Dziugan P, Kręgiel D.
    Biomed Res Int; 2016 Mar; 2016():3154929. PubMed ID: 27722169
    [Abstract] [Full Text] [Related]

  • 23. Simultaneous utilization of non-starch polysaccharides and starch and viscosity reduction for bioethanol fermentation from fresh Canna edulis Ker. tubers.
    Huang Y, Jin Y, Fang Y, Li Y, Zhao H.
    Bioresour Technol; 2013 Jan; 128():560-4. PubMed ID: 23211480
    [Abstract] [Full Text] [Related]

  • 24. Model-based optimization and scale-up of multi-feed simultaneous saccharification and co-fermentation of steam pre-treated lignocellulose enables high gravity ethanol production.
    Wang R, Unrean P, Franzén CJ.
    Biotechnol Biofuels; 2016 Jan; 9():88. PubMed ID: 27096006
    [Abstract] [Full Text] [Related]

  • 25. Optimization of pre-saccharification time during dSSF process in oat-hull bioethanol technology.
    Mironova GF, Skiba EA, Kukhlenko AA.
    3 Biotech; 2019 Dec; 9(12):455. PubMed ID: 31832302
    [Abstract] [Full Text] [Related]

  • 26. Xylanases of Bacillus spp. isolated from ruminant dung as potential accessory enzymes for agro-waste saccharification.
    Thite VS, Nerurkar AS.
    Lett Appl Microbiol; 2015 May; 60(5):456-66. PubMed ID: 25645626
    [Abstract] [Full Text] [Related]

  • 27. Solid state fermentation and crude cellulase based bioconversion of potential bamboo biomass to reducing sugar for bioenergy production.
    Pandey RK, Chand K, Tewari L.
    J Sci Food Agric; 2018 Sep; 98(12):4411-4419. PubMed ID: 29435990
    [Abstract] [Full Text] [Related]

  • 28. Ultrasound pretreatment of cassava chip slurry to enhance sugar release for subsequent ethanol production.
    Nitayavardhana S, Rakshit SK, Grewell D, van Leeuwen JH, Khanal SK.
    Biotechnol Bioeng; 2008 Oct 15; 101(3):487-96. PubMed ID: 18454502
    [Abstract] [Full Text] [Related]

  • 29. Effects of granule swelling on starch saccharification by granular starch hydrolyzing enzyme.
    Li Z, Cai L, Gu Z, Shi YC.
    J Agric Food Chem; 2014 Aug 13; 62(32):8114-9. PubMed ID: 25039418
    [Abstract] [Full Text] [Related]

  • 30. Production of bioethanol from four species of duckweeds (Landoltia punctata, Lemna aequinoctialis, Spirodela polyrrhiza, and Wolffia arrhiza) through optimization of saccharification process and fermentation with Saccharomyces cerevisiae.
    Faizal A, Sembada AA, Priharto N.
    Saudi J Biol Sci; 2021 Jan 13; 28(1):294-301. PubMed ID: 33424309
    [Abstract] [Full Text] [Related]

  • 31. Simultaneous saccharification and continuous fermentation of sludge-containing mash for bioethanol production by Saccharomyces cerevisiae CHFY0321.
    Moon SK, Kim SW, Choi GW.
    J Biotechnol; 2012 Feb 20; 157(4):584-9. PubMed ID: 21723335
    [Abstract] [Full Text] [Related]

  • 32. [Surface display of pectinesterase on Saccharomyces cerevisiae for efficient bioethanol production from sweet potato starch].
    Chen X, Xiao Y, Shen W, FAn Y.
    Wei Sheng Wu Xue Bao; 2016 Jun 04; 56(6):922-31. PubMed ID: 29727190
    [Abstract] [Full Text] [Related]

  • 33. Use of mesophilic fungal amylases produced by solid-state fermentation in the cold hydrolysis of raw babassu cake starch.
    de Castro AM, de Andréa TV, Castilho Ldos R, Freire DM.
    Appl Biochem Biotechnol; 2010 Nov 04; 162(6):1612-25. PubMed ID: 20306155
    [Abstract] [Full Text] [Related]

  • 34. Application of thermophilic enzymes and water jet system to cassava pulp.
    Chaikaew S, Maeno Y, Visessanguan W, Ogura K, Sugino G, Lee SH, Ishikawa K.
    Bioresour Technol; 2012 Dec 04; 126():87-91. PubMed ID: 23073093
    [Abstract] [Full Text] [Related]

  • 35. Whole unripe plantain (Musa paradisiaca L.) as raw material for bioethanol production.
    Alonso-Gómez LA, Heredia-Olea E, Serna-Saldivar SO, Bello-Pérez LA.
    J Sci Food Agric; 2019 Oct 04; 99(13):5784-5791. PubMed ID: 31162677
    [Abstract] [Full Text] [Related]

  • 36. Clostridium manihotivorum sp. nov., a novel mesophilic anaerobic bacterium that produces cassava pulp-degrading enzymes.
    Cheawchanlertfa P, Sutheeworapong S, Jenjaroenpun P, Wongsurawat T, Nookaew I, Cheevadhanarak S, Kosugi A, Pason P, Waeonukul R, Ratanakhanokchai K, Tachaapaikoon C.
    PeerJ; 2020 Oct 04; 8():e10343. PubMed ID: 33240652
    [Abstract] [Full Text] [Related]

  • 37. Efficient utilization of cassava pulp for succinate production by metabolically engineered Escherichia coli KJ122.
    Sawisit A, Jantama SS, Kanchanatawee S, Jantama K.
    Bioprocess Biosyst Eng; 2015 Jan 04; 38(1):175-87. PubMed ID: 25030337
    [Abstract] [Full Text] [Related]

  • 38. Evaluation of a recombinant insect-derived amylase performance in simultaneous saccharification and fermentation process with industrial yeasts.
    Celińska E, Borkowska M, Białas W.
    Appl Microbiol Biotechnol; 2016 Mar 04; 100(6):2693-707. PubMed ID: 26545757
    [Abstract] [Full Text] [Related]

  • 39. Production and characterization of multi-polysaccharide degrading enzymes from Aspergillus aculeatus BCC199 for saccharification of agricultural residues.
    Suwannarangsee S, Arnthong J, Eurwilaichitr L, Champreda V.
    J Microbiol Biotechnol; 2014 Oct 04; 24(10):1427-37. PubMed ID: 25001556
    [Abstract] [Full Text] [Related]

  • 40. Direct fermentation of raw starch using a Kluyveromyces marxianus strain that expresses glucoamylase and alpha-amylase to produce ethanol.
    Wang R, Wang D, Gao X, Hong J.
    Biotechnol Prog; 2014 Oct 04; 30(2):338-47. PubMed ID: 24478139
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.