These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


266 related items for PubMed ID: 28871340

  • 1. PhzA, the shunt switch of phenazine-1,6-dicarboxylic acid biosynthesis in Pseudomonas chlororaphis HT66.
    Guo S, Wang Y, Dai B, Wang W, Hu H, Huang X, Zhang X.
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7165-7175. PubMed ID: 28871340
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. iTRAQ-based quantitative proteomic analysis reveals potential factors associated with the enhancement of phenazine-1-carboxamide production in Pseudomonas chlororaphis P3.
    Jin XJ, Peng HS, Hu HB, Huang XQ, Wang W, Zhang XH.
    Sci Rep; 2016 Jun 07; 6():27393. PubMed ID: 27273243
    [Abstract] [Full Text] [Related]

  • 4. Designing an Artificial Pathway for the Biosynthesis of a Novel Phenazine N-Oxide in Pseudomonas chlororaphis HT66.
    Guo S, Liu R, Wang W, Hu H, Li Z, Zhang X.
    ACS Synth Biol; 2020 Apr 17; 9(4):883-892. PubMed ID: 32197042
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Metabolic Engineering of Pseudomonas chlororaphis Qlu-1 for the Enhanced Production of Phenazine-1-carboxamide.
    Li L, Li Z, Yao W, Zhang X, Wang R, Li P, Yang K, Wang T, Liu K.
    J Agric Food Chem; 2020 Dec 16; 68(50):14832-14840. PubMed ID: 33287542
    [Abstract] [Full Text] [Related]

  • 8. Identification, synthesis and regulatory function of the N-acylated homoserine lactone signals produced by Pseudomonas chlororaphis HT66.
    Peng H, Ouyang Y, Bilal M, Wang W, Hu H, Zhang X.
    Microb Cell Fact; 2018 Jan 22; 17(1):9. PubMed ID: 29357848
    [Abstract] [Full Text] [Related]

  • 9. Identification of new arylamine N-acetyltransferases and enhancing 2-acetamidophenol production in Pseudomonas chlororaphis HT66.
    Guo S, Wang Y, Wang W, Hu H, Zhang X.
    Microb Cell Fact; 2020 May 19; 19(1):105. PubMed ID: 32430011
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains.
    Chin-A-Woeng TF, Thomas-Oates JE, Lugtenberg BJ, Bloemberg GV.
    Mol Plant Microbe Interact; 2001 Aug 19; 14(8):1006-15. PubMed ID: 11497461
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.