These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
266 related items for PubMed ID: 28872648
1. MicroRNAs regulate the main events in rice drought stress response by manipulating the water supply to shoots. Fard EM, Bakhshi B, Farsi M, Kakhki AM, Nikpay N, Ebrahimi MA, Mardi M, Salekdeh GH. Mol Biosyst; 2017 Oct 24; 13(11):2289-2302. PubMed ID: 28872648 [Abstract] [Full Text] [Related]
2. Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage. Cheah BH, Nadarajah K, Divate MD, Wickneswari R. BMC Genomics; 2015 Sep 15; 16(1):692. PubMed ID: 26369665 [Abstract] [Full Text] [Related]
3. MicroRNA Signatures of Drought Signaling in Rice Root. Bakhshi B, Mohseni Fard E, Nikpay N, Ebrahimi MA, Bihamta MR, Mardi M, Salekdeh GH. PLoS One; 2016 Sep 15; 11(6):e0156814. PubMed ID: 27276090 [Abstract] [Full Text] [Related]
4. Identification of microRNAs in Response to Drought in Common Wild Rice (Oryza rufipogon Griff.) Shoots and Roots. Zhang JW, Long Y, Xue MD, Xiao XG, Pei XW. PLoS One; 2017 Sep 15; 12(1):e0170330. PubMed ID: 28107426 [Abstract] [Full Text] [Related]
5. Transcriptome profiling of drought responsive noncoding RNAs and their target genes in rice. Chung PJ, Jung H, Jeong DH, Ha SH, Choi YD, Kim JK. BMC Genomics; 2016 Aug 08; 17():563. PubMed ID: 27501838 [Abstract] [Full Text] [Related]
6. Elevated carbon dioxide and drought modulate physiology and storage-root development in sweet potato by regulating microRNAs. Saminathan T, Alvarado A, Lopez C, Shinde S, Gajanayake B, Abburi VL, Vajja VG, Jagadeeswaran G, Raja Reddy K, Nimmakayala P, Reddy UK. Funct Integr Genomics; 2019 Jan 08; 19(1):171-190. PubMed ID: 30244303 [Abstract] [Full Text] [Related]
7. Unique miRNome during anthesis in drought-tolerant indica rice var. Nagina 22. Kansal S, Mutum RD, Balyan SC, Arora MK, Singh AK, Mathur S, Raghuvanshi S. Planta; 2015 Jun 08; 241(6):1543-59. PubMed ID: 25809150 [Abstract] [Full Text] [Related]
8. Identification and Characterization of Novel Maize Mirnas Involved in Different Genetic Background. Sheng L, Chai W, Gong X, Zhou L, Cai R, Li X, Zhao Y, Jiang H, Cheng B. Int J Biol Sci; 2015 Jun 08; 11(7):781-93. PubMed ID: 26078720 [Abstract] [Full Text] [Related]
9. Combinations of Small RNA, RNA, and Degradome Sequencing Uncovers the Expression Pattern of microRNA⁻mRNA Pairs Adapting to Drought Stress in Leaf and Root of Dactylis glomerata L. Ji Y, Chen P, Chen J, Pennerman KK, Liang X, Yan H, Zhou S, Feng G, Wang C, Yin G, Zhang X, Hu Y, Huang L. Int J Mol Sci; 2018 Oct 11; 19(10):. PubMed ID: 30314311 [Abstract] [Full Text] [Related]
10. Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress. Huang L, Zhang F, Zhang F, Wang W, Zhou Y, Fu B, Li Z. BMC Genomics; 2014 Nov 26; 15(1):1026. PubMed ID: 25428615 [Abstract] [Full Text] [Related]
11. Small RNA profiles in soybean primary root tips under water deficit. Zheng Y, Hivrale V, Zhang X, Valliyodan B, Lelandais-Brière C, Farmer AD, May GD, Crespi M, Nguyen HT, Sunkar R. BMC Syst Biol; 2016 Dec 05; 10(Suppl 5):126. PubMed ID: 28105955 [Abstract] [Full Text] [Related]
12. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data. Tian XJ, Long Y, Wang J, Zhang JW, Wang YY, Li WM, Peng YF, Yuan QH, Pei XW. PLoS One; 2015 Dec 05; 10(7):e0131455. PubMed ID: 26134138 [Abstract] [Full Text] [Related]
13. Combined analysis and miRNA expression profiles of the flowering related genes in common wild rice (oryza rufipogon Griff.). Wang J, Long Y, Zhang J, Xue M, Huang G, Huang K, Yuan Q, Pei X. Genes Genomics; 2018 Aug 05; 40(8):835-845. PubMed ID: 30047109 [Abstract] [Full Text] [Related]
14. Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet. Wang Y, Li L, Tang S, Liu J, Zhang H, Zhi H, Jia G, Diao X. BMC Genet; 2016 Apr 12; 17():57. PubMed ID: 27068810 [Abstract] [Full Text] [Related]
15. Topological characteristics of target genes regulated by abiotic-stress-responsible miRNAs in a rice interactome network. Zhang L, Xuan H, Zuo Y, Xu G, Wang P, Song Y, Zhang S. Funct Integr Genomics; 2016 May 12; 16(3):243-51. PubMed ID: 26830287 [Abstract] [Full Text] [Related]
16. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress. Xie F, Stewart CN, Taki FA, He Q, Liu H, Zhang B. Plant Biotechnol J; 2014 Apr 12; 12(3):354-66. PubMed ID: 24283289 [Abstract] [Full Text] [Related]
17. High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice. Barrera-Figueroa BE, Gao L, Wu Z, Zhou X, Zhu J, Jin H, Liu R, Zhu JK. BMC Plant Biol; 2012 Aug 03; 12():132. PubMed ID: 22862743 [Abstract] [Full Text] [Related]
18. Identification of functionally important microRNAs from rice inflorescence at heading stage of a qDTY4.1-QTL bearing Near Isogenic Line under drought conditions. Cheah BH, Jadhao S, Vasudevan M, Wickneswari R, Nadarajah K. PLoS One; 2017 Aug 03; 12(10):e0186382. PubMed ID: 29045473 [Abstract] [Full Text] [Related]
19. Transcriptome-wide analysis of chromium-stress responsive microRNAs to explore miRNA-mediated regulatory networks in radish (Raphanus sativus L.). Liu W, Xu L, Wang Y, Shen H, Zhu X, Zhang K, Chen Y, Yu R, Limera C, Liu L. Sci Rep; 2015 Sep 11; 5():14024. PubMed ID: 26357995 [Abstract] [Full Text] [Related]