These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


225 related items for PubMed ID: 28883551

  • 1. Shape-based separation of microalga Euglena gracilis using inertial microfluidics.
    Li M, Muñoz HE, Goda K, Di Carlo D.
    Sci Rep; 2017 Sep 07; 7(1):10802. PubMed ID: 28883551
    [Abstract] [Full Text] [Related]

  • 2. Inertial focusing of ellipsoidal Euglena gracilis cells in a stepped microchannel.
    Li M, Muñoz HE, Schmidt A, Guo B, Lei C, Goda K, Di Carlo D.
    Lab Chip; 2016 Nov 01; 16(22):4458-4465. PubMed ID: 27766329
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Size-based sorting of hydrogel droplets using inertial microfluidics.
    Li M, van Zee M, Goda K, Di Carlo D.
    Lab Chip; 2018 Aug 21; 18(17):2575-2582. PubMed ID: 30046787
    [Abstract] [Full Text] [Related]

  • 5. Continuous scalable blood filtration device using inertial microfluidics.
    Mach AJ, Di Carlo D.
    Biotechnol Bioeng; 2010 Oct 01; 107(2):302-11. PubMed ID: 20589838
    [Abstract] [Full Text] [Related]

  • 6. A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells.
    Wang X, Liedert C, Liedert R, Papautsky I.
    Lab Chip; 2016 May 21; 16(10):1821-30. PubMed ID: 27050341
    [Abstract] [Full Text] [Related]

  • 7. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
    Bhagat AA, Hou HW, Li LD, Lim CT, Han J.
    Lab Chip; 2011 Jun 07; 11(11):1870-8. PubMed ID: 21505682
    [Abstract] [Full Text] [Related]

  • 8. Shape-based separation of drug-treated Escherichia coli using viscoelastic microfluidics.
    Zhang T, Liu H, Okano K, Tang T, Inoue K, Yamazaki Y, Kamikubo H, Cain AK, Tanaka Y, Inglis DW, Hosokawa Y, Yaxiaer Y, Li M.
    Lab Chip; 2022 Jul 26; 22(15):2801-2809. PubMed ID: 35642562
    [Abstract] [Full Text] [Related]

  • 9. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress.
    Lee MG, Shin JH, Bae CY, Choi S, Park JK.
    Anal Chem; 2013 Jul 02; 85(13):6213-8. PubMed ID: 23724953
    [Abstract] [Full Text] [Related]

  • 10. High-Throughput Accurate Single-Cell Screening of Euglena gracilis with Fluorescence-Assisted Optofluidic Time-Stretch Microscopy.
    Guo B, Lei C, Ito T, Jiang Y, Ozeki Y, Goda K.
    PLoS One; 2016 Jul 02; 11(11):e0166214. PubMed ID: 27846239
    [Abstract] [Full Text] [Related]

  • 11. A Triplet Parallelizing Spiral Microfluidic Chip for Continuous Separation of Tumor Cells.
    Chen H.
    Sci Rep; 2018 Mar 06; 8(1):4042. PubMed ID: 29511230
    [Abstract] [Full Text] [Related]

  • 12. Finding of phytase: Understanding growth promotion mechanism of phytic acid to freshwater microalga Euglena gracilis.
    Zhu J, Wakisaka M.
    Bioresour Technol; 2020 Jan 06; 296():122343. PubMed ID: 31711907
    [Abstract] [Full Text] [Related]

  • 13. Two-dimensional optical feedback control of Euglena confined in closed-type microfluidic channels.
    Ozasa K, Lee J, Song S, Hara M, Maeda M.
    Lab Chip; 2011 Jun 07; 11(11):1933-40. PubMed ID: 21491041
    [Abstract] [Full Text] [Related]

  • 14. The effects of tumor sera on cell shape and photosynthesis of Euglena gracilis.
    Ruppel HG, Benninghoff B.
    Z Naturforsch C Biosci; 1983 Jun 07; 38(9-10):763-9. PubMed ID: 6139924
    [Abstract] [Full Text] [Related]

  • 15. Enhancement of biomass yield and lipid accumulation of freshwater microalga Euglena gracilis by phenolic compounds from basic structures of lignin.
    Zhu J, Tan X, Hafid HS, Wakisaka M.
    Bioresour Technol; 2021 Feb 07; 321():124441. PubMed ID: 33268047
    [Abstract] [Full Text] [Related]

  • 16. Separation and Enrichment of Yeast Saccharomyces cerevisiae by Shape Using Viscoelastic Microfluidics.
    Liu P, Liu H, Yuan D, Jang D, Yan S, Li M.
    Anal Chem; 2021 Jan 26; 93(3):1586-1595. PubMed ID: 33289547
    [Abstract] [Full Text] [Related]

  • 17. Scaled-Up Inertial Microfluidics: Retention System for Microcarrier-Based Suspension Cultures.
    Moloudi R, Oh S, Yang C, Teo KL, Lam AT, Ebrahimi Warkiani M, Win Naing M.
    Biotechnol J; 2019 May 26; 14(5):e1800674. PubMed ID: 30791214
    [Abstract] [Full Text] [Related]

  • 18. Effect of two lignocellulose related sugar alcohols on the growth and metabolites biosynthesis of Euglena gracilis.
    Zhu J, Wakisaka M.
    Bioresour Technol; 2020 May 26; 303():122950. PubMed ID: 32045866
    [Abstract] [Full Text] [Related]

  • 19. Enhancement of photosynthetic capacity in Euglena gracilis by expression of cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase leads to increases in biomass and wax ester production.
    Ogawa T, Tamoi M, Kimura A, Mine A, Sakuyama H, Yoshida E, Maruta T, Suzuki K, Ishikawa T, Shigeoka S.
    Biotechnol Biofuels; 2015 May 26; 8():80. PubMed ID: 26056534
    [Abstract] [Full Text] [Related]

  • 20. Influence factors of channel geometry for separation of circulating tumor cells by four-ring inertial focusing microchannel.
    Liu D, Chen S, Luo X.
    Cell Biochem Funct; 2023 Apr 26; 41(3):375-388. PubMed ID: 36951265
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.