These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Multifunctional copolymer coating of polyethylene glycol, glycidyl methacrylate, and REDV to enhance the selectivity of endothelial cells. Wei Y, Zhang J, Li H, Zhang L, Bi H. J Biomater Sci Polym Ed; 2015; 26(18):1357-71. PubMed ID: 26381476 [Abstract] [Full Text] [Related]
4. [Construction of controllable polyethylene glycol bioactive coating with hemocompatibility from the surface of modified glass substrate]. Wei Y, Zhang J, Zhang Y, Feng X, Yang X. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Apr 25; 36(2):260-266. PubMed ID: 31016943 [Abstract] [Full Text] [Related]
5. Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility. Liu P, Chen Q, Yuan B, Chen M, Wu S, Lin S, Shen J. Mater Sci Eng C Mater Biol Appl; 2013 Oct 25; 33(7):3865-74. PubMed ID: 23910289 [Abstract] [Full Text] [Related]
9. Zwitterionic polycarboxybetaine coating functionalized with REDV peptide to improve selectivity for endothelial cells. Ji Y, Wei Y, Liu X, Wang J, Ren K, Ji J. J Biomed Mater Res A; 2012 Jun 25; 100(6):1387-97. PubMed ID: 22374807 [Abstract] [Full Text] [Related]
10. Improvement of hemocompatibility of polycaprolactone film surfaces with zwitterionic polymer brushes. Jiang H, Wang XB, Li CY, Li JS, Xu FJ, Mao C, Yang WT, Shen J. Langmuir; 2011 Sep 20; 27(18):11575-81. PubMed ID: 21851101 [Abstract] [Full Text] [Related]
11. Aqueous-based immobilization of initiator and surface-initiated ATRP to construct hemocompatible surface of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer. Hou J, Shi Q, Stagnaro P, Ye W, Jin J, Conzatti L, Yin J. Colloids Surf B Biointerfaces; 2013 Nov 01; 111():333-41. PubMed ID: 23838201 [Abstract] [Full Text] [Related]
13. A novel approach for UV-patterning with binary polymer brushes. Li L, Nakaji-Hirabayashi T, Kitano H, Ohno K, Saruwatari Y, Matsuoka K. Colloids Surf B Biointerfaces; 2018 Jan 01; 161():42-50. PubMed ID: 29040833 [Abstract] [Full Text] [Related]
15. Hemocompatibility of pseudozwitterionic polymer brushes with a systematic well-defined charge-bias control. Jhong JF, Sin MC, Kung HH, Chinnathambi A, Alharbi SA, Chang Y. J Biomater Sci Polym Ed; 2014 Jan 01; 25(14-15):1558-72. PubMed ID: 24894872 [Abstract] [Full Text] [Related]
16. Fabrication of nonbiofouling metal stent and in vitro studies on its hemocompatibility. Wang X, Miao J, Zhao H, Mao C, Chen X, Shen J. J Biomater Appl; 2014 Jul 01; 29(1):14-25. PubMed ID: 24262304 [Abstract] [Full Text] [Related]
17. Covalent immobilization of antibody fragments on well-defined polymer brushes via site-directed method. Iwata R, Satoh R, Iwasaki Y, Akiyoshi K. Colloids Surf B Biointerfaces; 2008 Apr 01; 62(2):288-98. PubMed ID: 18055186 [Abstract] [Full Text] [Related]
19. Effects of Grafting Density and Film Thickness on the Adhesion of Staphylococcus epidermidis to Poly(2-hydroxy ethyl methacrylate) and Poly(poly(ethylene glycol)methacrylate) Brushes. Ibanescu SA, Nowakowska J, Khanna N, Landmann R, Klok HA. Macromol Biosci; 2016 May 01; 16(5):676-85. PubMed ID: 26757483 [Abstract] [Full Text] [Related]